Optimal. Leaf size=28 \[ e^{e^{1-\frac {x}{2}}-e^{2 x^3 \left (1+e^x+\log (x)\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 1.03, antiderivative size = 39, normalized size of antiderivative = 1.39, number of steps used = 2, number of rules used = 2, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {12, 6706} \begin {gather*} e^{e^{\frac {2-x}{2}}-e^{2 e^x x^3+2 x^3} x^{2 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{e^{\frac {2-x}{2}}-e^{2 x^3+2 e^x x^3+2 x^3 \log (x)}} \left (-e^{\frac {2-x}{2}}+e^{2 x^3+2 e^x x^3+2 x^3 \log (x)} \left (-16 x^2+e^x \left (-12 x^2-4 x^3\right )-12 x^2 \log (x)\right )\right ) \, dx\\ &=e^{e^{\frac {2-x}{2}}-e^{2 x^3+2 e^x x^3} x^{2 x^3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 33, normalized size = 1.18 \begin {gather*} e^{e^{1-\frac {x}{2}}-e^{2 \left (1+e^x\right ) x^3} x^{2 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 46, normalized size = 1.64 \begin {gather*} e^{\left (-e^{\left (2 \, {\left (x^{3} e^{\left (-x + 2\right )} \log \relax (x) + x^{3} e^{2} + x^{3} e^{\left (-x + 2\right )}\right )} e^{\left (x - 2\right )}\right )} + e^{\left (-\frac {1}{2} \, x + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{2} \, {\left (4 \, {\left (3 \, x^{2} \log \relax (x) + 4 \, x^{2} + {\left (x^{3} + 3 \, x^{2}\right )} e^{x}\right )} e^{\left (2 \, x^{3} e^{x} + 2 \, x^{3} \log \relax (x) + 2 \, x^{3}\right )} + e^{\left (-\frac {1}{2} \, x + 1\right )}\right )} e^{\left (-e^{\left (2 \, x^{3} e^{x} + 2 \, x^{3} \log \relax (x) + 2 \, x^{3}\right )} + e^{\left (-\frac {1}{2} \, x + 1\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{-x^{2 x^{3}} {\mathrm e}^{2 x^{3} \left ({\mathrm e}^{x}+1\right )}+{\mathrm e}^{1-\frac {x}{2}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{2} \, \int {\left (4 \, {\left (3 \, x^{2} \log \relax (x) + 4 \, x^{2} + {\left (x^{3} + 3 \, x^{2}\right )} e^{x}\right )} e^{\left (2 \, x^{3} e^{x} + 2 \, x^{3} \log \relax (x) + 2 \, x^{3}\right )} + e^{\left (-\frac {1}{2} \, x + 1\right )}\right )} e^{\left (-e^{\left (2 \, x^{3} e^{x} + 2 \, x^{3} \log \relax (x) + 2 \, x^{3}\right )} + e^{\left (-\frac {1}{2} \, x + 1\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 33, normalized size = 1.18 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-\frac {x}{2}}\,\mathrm {e}}\,{\mathrm {e}}^{-x^{2\,x^3}\,{\mathrm {e}}^{2\,x^3\,{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.64, size = 34, normalized size = 1.21 \begin {gather*} e^{- e^{2 x^{3} e^{x} + 2 x^{3} \log {\relax (x )} + 2 x^{3}} + \frac {e}{\sqrt {e^{x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________