Optimal. Leaf size=21 \[ x \left (5+x+\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 166, normalized size of antiderivative = 7.90, number of steps used = 12, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {12, 6742, 2176, 2194} \begin {gather*} \frac {1}{3} x^4 e^{-\frac {x}{\log (3)}}-\frac {1}{3} x^3 \log (81) e^{-\frac {x}{\log (3)}}+\frac {4}{3} x^3 \log (3) e^{-\frac {x}{\log (3)}}+4 x^2 \log ^2(3) e^{-\frac {x}{\log (3)}}-x^2 \log (3) \log (81) e^{-\frac {x}{\log (3)}}+\frac {1}{4} (2 x+5)^2+8 \log ^4(3) e^{-\frac {x}{\log (3)}}+8 x \log ^3(3) e^{-\frac {x}{\log (3)}}-2 \log ^3(3) \log (81) e^{-\frac {x}{\log (3)}}-2 x \log ^2(3) \log (81) e^{-\frac {x}{\log (3)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-\frac {x}{\log (3)}} \left (-x^4+4 x^3 \log (3)+e^{\frac {x}{\log (3)}} (15+6 x) \log (3)\right ) \, dx}{3 \log (3)}\\ &=\frac {\int \left (-e^{-\frac {x}{\log (3)}} x^4+3 (5+2 x) \log (3)+e^{-\frac {x}{\log (3)}} x^3 \log (81)\right ) \, dx}{3 \log (3)}\\ &=\frac {1}{4} (5+2 x)^2-\frac {\int e^{-\frac {x}{\log (3)}} x^4 \, dx}{3 \log (3)}+\frac {\log (81) \int e^{-\frac {x}{\log (3)}} x^3 \, dx}{3 \log (3)}\\ &=\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4+\frac {1}{4} (5+2 x)^2-\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3 \log (81)-\frac {4}{3} \int e^{-\frac {x}{\log (3)}} x^3 \, dx+\log (81) \int e^{-\frac {x}{\log (3)}} x^2 \, dx\\ &=\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4+\frac {1}{4} (5+2 x)^2+\frac {4}{3} e^{-\frac {x}{\log (3)}} x^3 \log (3)-\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3 \log (81)-e^{-\frac {x}{\log (3)}} x^2 \log (3) \log (81)-(4 \log (3)) \int e^{-\frac {x}{\log (3)}} x^2 \, dx+(2 \log (3) \log (81)) \int e^{-\frac {x}{\log (3)}} x \, dx\\ &=\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4+\frac {1}{4} (5+2 x)^2+\frac {4}{3} e^{-\frac {x}{\log (3)}} x^3 \log (3)+4 e^{-\frac {x}{\log (3)}} x^2 \log ^2(3)-\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3 \log (81)-e^{-\frac {x}{\log (3)}} x^2 \log (3) \log (81)-2 e^{-\frac {x}{\log (3)}} x \log ^2(3) \log (81)-\left (8 \log ^2(3)\right ) \int e^{-\frac {x}{\log (3)}} x \, dx+\left (2 \log ^2(3) \log (81)\right ) \int e^{-\frac {x}{\log (3)}} \, dx\\ &=\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4+\frac {1}{4} (5+2 x)^2+\frac {4}{3} e^{-\frac {x}{\log (3)}} x^3 \log (3)+4 e^{-\frac {x}{\log (3)}} x^2 \log ^2(3)+8 e^{-\frac {x}{\log (3)}} x \log ^3(3)-\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3 \log (81)-e^{-\frac {x}{\log (3)}} x^2 \log (3) \log (81)-2 e^{-\frac {x}{\log (3)}} x \log ^2(3) \log (81)-2 e^{-\frac {x}{\log (3)}} \log ^3(3) \log (81)-\left (8 \log ^3(3)\right ) \int e^{-\frac {x}{\log (3)}} \, dx\\ &=\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4+\frac {1}{4} (5+2 x)^2+\frac {4}{3} e^{-\frac {x}{\log (3)}} x^3 \log (3)+4 e^{-\frac {x}{\log (3)}} x^2 \log ^2(3)+8 e^{-\frac {x}{\log (3)}} x \log ^3(3)+8 e^{-\frac {x}{\log (3)}} \log ^4(3)-\frac {1}{3} e^{-\frac {x}{\log (3)}} x^3 \log (81)-e^{-\frac {x}{\log (3)}} x^2 \log (3) \log (81)-2 e^{-\frac {x}{\log (3)}} x \log ^2(3) \log (81)-2 e^{-\frac {x}{\log (3)}} \log ^3(3) \log (81)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 1.10 \begin {gather*} 5 x+x^2+\frac {1}{3} e^{-\frac {x}{\log (3)}} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 30, normalized size = 1.43 \begin {gather*} \frac {1}{3} \, {\left (x^{4} + 3 \, {\left (x^{2} + 5 \, x\right )} e^{\frac {x}{\log \relax (3)}}\right )} e^{\left (-\frac {x}{\log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 33, normalized size = 1.57 \begin {gather*} \frac {x^{4} e^{\left (-\frac {x}{\log \relax (3)}\right )} \log \relax (3) + 3 \, x^{2} \log \relax (3) + 15 \, x \log \relax (3)}{3 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 1.00
method | result | size |
risch | \(x^{2}+\frac {{\mathrm e}^{-\frac {x}{\ln \relax (3)}} x^{4}}{3}+5 x\) | \(21\) |
derivativedivides | \(x^{2}+\frac {{\mathrm e}^{-\frac {x}{\ln \relax (3)}} x^{4}}{3}+5 x\) | \(22\) |
default | \(x^{2}+\frac {{\mathrm e}^{-\frac {x}{\ln \relax (3)}} x^{4}}{3}+5 x\) | \(22\) |
norman | \(\left (x^{2} {\mathrm e}^{\frac {x}{\ln \relax (3)}}+\frac {x^{4}}{3}+5 x \,{\mathrm e}^{\frac {x}{\ln \relax (3)}}\right ) {\mathrm e}^{-\frac {x}{\ln \relax (3)}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 107, normalized size = 5.10 \begin {gather*} \frac {3 \, x^{2} \log \relax (3) - 4 \, {\left (x^{3} \log \relax (3) + 3 \, x^{2} \log \relax (3)^{2} + 6 \, x \log \relax (3)^{3} + 6 \, \log \relax (3)^{4}\right )} e^{\left (-\frac {x}{\log \relax (3)}\right )} \log \relax (3) + {\left (x^{4} \log \relax (3) + 4 \, x^{3} \log \relax (3)^{2} + 12 \, x^{2} \log \relax (3)^{3} + 24 \, x \log \relax (3)^{4} + 24 \, \log \relax (3)^{5}\right )} e^{\left (-\frac {x}{\log \relax (3)}\right )} + 15 \, x \log \relax (3)}{3 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 20, normalized size = 0.95 \begin {gather*} 5\,x+\frac {x^4\,{\mathrm {e}}^{-\frac {x}{\ln \relax (3)}}}{3}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.81 \begin {gather*} \frac {x^{4} e^{- \frac {x}{\log {\relax (3 )}}}}{3} + x^{2} + 5 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________