Optimal. Leaf size=28 \[ \log \left (\frac {3}{x}\right )-\frac {20 \left (-2+\frac {(1-x)^2}{\log (4 x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 38, normalized size of antiderivative = 1.36, number of steps used = 18, number of rules used = 10, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6742, 43, 2353, 2297, 2298, 2306, 2309, 2178, 2302, 30} \begin {gather*} \frac {40}{x}-\frac {20 x}{\log (4 x)}-\log (x)+\frac {40}{\log (4 x)}-\frac {20}{x \log (4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 43
Rule 2178
Rule 2297
Rule 2298
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-40-x}{x^2}+\frac {20 (-1+x)^2}{x^2 \log ^2(4 x)}-\frac {20 \left (-1+x^2\right )}{x^2 \log (4 x)}\right ) \, dx\\ &=20 \int \frac {(-1+x)^2}{x^2 \log ^2(4 x)} \, dx-20 \int \frac {-1+x^2}{x^2 \log (4 x)} \, dx+\int \frac {-40-x}{x^2} \, dx\\ &=20 \int \left (\frac {1}{\log ^2(4 x)}+\frac {1}{x^2 \log ^2(4 x)}-\frac {2}{x \log ^2(4 x)}\right ) \, dx-20 \int \left (\frac {1}{\log (4 x)}-\frac {1}{x^2 \log (4 x)}\right ) \, dx+\int \left (-\frac {40}{x^2}-\frac {1}{x}\right ) \, dx\\ &=\frac {40}{x}-\log (x)+20 \int \frac {1}{\log ^2(4 x)} \, dx+20 \int \frac {1}{x^2 \log ^2(4 x)} \, dx-20 \int \frac {1}{\log (4 x)} \, dx+20 \int \frac {1}{x^2 \log (4 x)} \, dx-40 \int \frac {1}{x \log ^2(4 x)} \, dx\\ &=\frac {40}{x}-\log (x)-\frac {20}{x \log (4 x)}-\frac {20 x}{\log (4 x)}-5 \text {li}(4 x)+20 \int \frac {1}{\log (4 x)} \, dx-20 \int \frac {1}{x^2 \log (4 x)} \, dx-40 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (4 x)\right )+80 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (4 x)\right )\\ &=\frac {40}{x}+80 \text {Ei}(-\log (4 x))-\log (x)+\frac {40}{\log (4 x)}-\frac {20}{x \log (4 x)}-\frac {20 x}{\log (4 x)}-80 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (4 x)\right )\\ &=\frac {40}{x}-\log (x)+\frac {40}{\log (4 x)}-\frac {20}{x \log (4 x)}-\frac {20 x}{\log (4 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 38, normalized size = 1.36 \begin {gather*} \frac {40}{x}-\log (x)+\frac {40}{\log (4 x)}-\frac {20}{x \log (4 x)}-\frac {20 x}{\log (4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 35, normalized size = 1.25 \begin {gather*} -\frac {x \log \left (4 \, x\right )^{2} + 20 \, x^{2} - 40 \, x - 40 \, \log \left (4 \, x\right ) + 20}{x \log \left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 29, normalized size = 1.04 \begin {gather*} \frac {40}{x} - \frac {20 \, {\left (x^{2} - 2 \, x + 1\right )}}{x \log \left (4 \, x\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.14
method | result | size |
risch | \(-\frac {x \ln \relax (x )-40}{x}-\frac {20 \left (x^{2}-2 x +1\right )}{x \ln \left (4 x \right )}\) | \(32\) |
norman | \(\frac {-20-x \ln \left (4 x \right )^{2}+40 x -20 x^{2}+40 \ln \left (4 x \right )}{x \ln \left (4 x \right )}\) | \(36\) |
derivativedivides | \(-\ln \left (4 x \right )+\frac {40}{x}-\frac {20 x}{\ln \left (4 x \right )}+\frac {40}{\ln \left (4 x \right )}-\frac {20}{x \ln \left (4 x \right )}\) | \(41\) |
default | \(-\ln \left (4 x \right )+\frac {40}{x}-\frac {20 x}{\ln \left (4 x \right )}+\frac {40}{\ln \left (4 x \right )}-\frac {20}{x \ln \left (4 x \right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 52, normalized size = 1.86 \begin {gather*} \frac {40}{x} + \frac {40}{\log \left (4 \, x\right )} + 80 \, {\rm Ei}\left (-\log \left (4 \, x\right )\right ) - 5 \, {\rm Ei}\left (\log \left (4 \, x\right )\right ) + 5 \, \Gamma \left (-1, -\log \left (4 \, x\right )\right ) - 80 \, \Gamma \left (-1, \log \left (4 \, x\right )\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 31, normalized size = 1.11 \begin {gather*} \frac {40}{x}-\ln \relax (x)-\frac {20\,x^2-40\,x+20}{x\,\ln \left (4\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.79 \begin {gather*} - \log {\relax (x )} + \frac {- 20 x^{2} + 40 x - 20}{x \log {\left (4 x \right )}} + \frac {40}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________