3.19.18 \(\int \frac {e^{e^{81+108 x+54 x^2+12 x^3+x^4} x} (8+5 x-2 x^2) (-5+4 x+e^{81+108 x+54 x^2+12 x^3+x^4} (-8-869 x-1402 x^2-612 x^3+4 x^4+52 x^5+8 x^6))}{-8-5 x+2 x^2} \, dx\)

Optimal. Leaf size=32 \[ e^{e^{(3+x)^4} x} (-x+(4-x) (2+2 x))-\log (5) \]

________________________________________________________________________________________

Rubi [B]  time = 0.25, antiderivative size = 132, normalized size of antiderivative = 4.12, number of steps used = 2, number of rules used = 2, integrand size = 103, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {1586, 2288} \begin {gather*} \frac {\left (-8 x^6-52 x^5-4 x^4+612 x^3+1402 x^2+869 x+8\right ) \exp \left (x^4+12 x^3+54 x^2+e^{x^4+12 x^3+54 x^2+108 x+81} x+108 x+81\right )}{4 e^{x^4+12 x^3+54 x^2+108 x+81} x \left (x^3+9 x^2+27 x+27\right )+e^{x^4+12 x^3+54 x^2+108 x+81}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(E^(81 + 108*x + 54*x^2 + 12*x^3 + x^4)*x)*(8 + 5*x - 2*x^2)*(-5 + 4*x + E^(81 + 108*x + 54*x^2 + 12*x^
3 + x^4)*(-8 - 869*x - 1402*x^2 - 612*x^3 + 4*x^4 + 52*x^5 + 8*x^6)))/(-8 - 5*x + 2*x^2),x]

[Out]

(E^(81 + 108*x + E^(81 + 108*x + 54*x^2 + 12*x^3 + x^4)*x + 54*x^2 + 12*x^3 + x^4)*(8 + 869*x + 1402*x^2 + 612
*x^3 - 4*x^4 - 52*x^5 - 8*x^6))/(E^(81 + 108*x + 54*x^2 + 12*x^3 + x^4) + 4*E^(81 + 108*x + 54*x^2 + 12*x^3 +
x^4)*x*(27 + 27*x + 9*x^2 + x^3))

Rule 1586

Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\int e^{e^{81+108 x+54 x^2+12 x^3+x^4} x} \left (-5+4 x+e^{81+108 x+54 x^2+12 x^3+x^4} \left (-8-869 x-1402 x^2-612 x^3+4 x^4+52 x^5+8 x^6\right )\right ) \, dx\\ &=\frac {\exp \left (81+108 x+e^{81+108 x+54 x^2+12 x^3+x^4} x+54 x^2+12 x^3+x^4\right ) \left (8+869 x+1402 x^2+612 x^3-4 x^4-52 x^5-8 x^6\right )}{e^{81+108 x+54 x^2+12 x^3+x^4}+4 e^{81+108 x+54 x^2+12 x^3+x^4} x \left (27+27 x+9 x^2+x^3\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 22, normalized size = 0.69 \begin {gather*} e^{e^{(3+x)^4} x} \left (8+5 x-2 x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(E^(81 + 108*x + 54*x^2 + 12*x^3 + x^4)*x)*(8 + 5*x - 2*x^2)*(-5 + 4*x + E^(81 + 108*x + 54*x^2 +
 12*x^3 + x^4)*(-8 - 869*x - 1402*x^2 - 612*x^3 + 4*x^4 + 52*x^5 + 8*x^6)))/(-8 - 5*x + 2*x^2),x]

[Out]

E^(E^(3 + x)^4*x)*(8 + 5*x - 2*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 34, normalized size = 1.06 \begin {gather*} e^{\left (x e^{\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )} + \log \left (-2 \, x^{2} + 5 \, x + 8\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^6+52*x^5+4*x^4-612*x^3-1402*x^2-869*x-8)*exp(x^4+12*x^3+54*x^2+108*x+81)+4*x-5)*exp(log(-2*x^2
+5*x+8)+x*exp(x^4+12*x^3+54*x^2+108*x+81))/(2*x^2-5*x-8),x, algorithm="fricas")

[Out]

e^(x*e^(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) + log(-2*x^2 + 5*x + 8))

________________________________________________________________________________________

giac [A]  time = 0.51, size = 34, normalized size = 1.06 \begin {gather*} e^{\left (x e^{\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )} + \log \left (-2 \, x^{2} + 5 \, x + 8\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^6+52*x^5+4*x^4-612*x^3-1402*x^2-869*x-8)*exp(x^4+12*x^3+54*x^2+108*x+81)+4*x-5)*exp(log(-2*x^2
+5*x+8)+x*exp(x^4+12*x^3+54*x^2+108*x+81))/(2*x^2-5*x-8),x, algorithm="giac")

[Out]

e^(x*e^(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) + log(-2*x^2 + 5*x + 8))

________________________________________________________________________________________

maple [A]  time = 0.46, size = 21, normalized size = 0.66




method result size



risch \(\left (-2 x^{2}+5 x +8\right ) {\mathrm e}^{{\mathrm e}^{\left (3+x \right )^{4}} x}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*x^6+52*x^5+4*x^4-612*x^3-1402*x^2-869*x-8)*exp(x^4+12*x^3+54*x^2+108*x+81)+4*x-5)*exp(ln(-2*x^2+5*x+8)
+x*exp(x^4+12*x^3+54*x^2+108*x+81))/(2*x^2-5*x-8),x,method=_RETURNVERBOSE)

[Out]

(-2*x^2+5*x+8)*exp(exp((3+x)^4)*x)

________________________________________________________________________________________

maxima [A]  time = 0.91, size = 34, normalized size = 1.06 \begin {gather*} -{\left (2 \, x^{2} - 5 \, x - 8\right )} e^{\left (x e^{\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^6+52*x^5+4*x^4-612*x^3-1402*x^2-869*x-8)*exp(x^4+12*x^3+54*x^2+108*x+81)+4*x-5)*exp(log(-2*x^2
+5*x+8)+x*exp(x^4+12*x^3+54*x^2+108*x+81))/(2*x^2-5*x-8),x, algorithm="maxima")

[Out]

-(2*x^2 - 5*x - 8)*e^(x*e^(x^4 + 12*x^3 + 54*x^2 + 108*x + 81))

________________________________________________________________________________________

mupad [B]  time = 0.24, size = 36, normalized size = 1.12 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^{108\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{81}\,{\mathrm {e}}^{12\,x^3}\,{\mathrm {e}}^{54\,x^2}}\,\left (-2\,x^2+5\,x+8\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(log(5*x - 2*x^2 + 8) + x*exp(108*x + 54*x^2 + 12*x^3 + x^4 + 81))*(exp(108*x + 54*x^2 + 12*x^3 + x^4
+ 81)*(869*x + 1402*x^2 + 612*x^3 - 4*x^4 - 52*x^5 - 8*x^6 + 8) - 4*x + 5))/(5*x - 2*x^2 + 8),x)

[Out]

exp(x*exp(108*x)*exp(x^4)*exp(81)*exp(12*x^3)*exp(54*x^2))*(5*x - 2*x^2 + 8)

________________________________________________________________________________________

sympy [A]  time = 6.00, size = 32, normalized size = 1.00 \begin {gather*} \left (- 2 x^{2} + 5 x + 8\right ) e^{x e^{x^{4} + 12 x^{3} + 54 x^{2} + 108 x + 81}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x**6+52*x**5+4*x**4-612*x**3-1402*x**2-869*x-8)*exp(x**4+12*x**3+54*x**2+108*x+81)+4*x-5)*exp(ln
(-2*x**2+5*x+8)+x*exp(x**4+12*x**3+54*x**2+108*x+81))/(2*x**2-5*x-8),x)

[Out]

(-2*x**2 + 5*x + 8)*exp(x*exp(x**4 + 12*x**3 + 54*x**2 + 108*x + 81))

________________________________________________________________________________________