Optimal. Leaf size=26 \[ \frac {\left (e^{x/400}+x\right ) \left (4-x-x^2\right )}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 49, normalized size of antiderivative = 1.88, number of steps used = 11, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {12, 14, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -\frac {1}{12} (2 x+1)^2-\frac {e^{x/400}}{3}-\frac {1}{3} e^{x/400} x+\frac {4 e^{x/400}}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-400 x^2-800 x^3+e^{x/400} \left (-1600+4 x-401 x^2-x^3\right )}{x^2} \, dx}{1200}\\ &=\frac {\int \left (-400 (1+2 x)-\frac {e^{x/400} \left (1600-4 x+401 x^2+x^3\right )}{x^2}\right ) \, dx}{1200}\\ &=-\frac {1}{12} (1+2 x)^2-\frac {\int \frac {e^{x/400} \left (1600-4 x+401 x^2+x^3\right )}{x^2} \, dx}{1200}\\ &=-\frac {1}{12} (1+2 x)^2-\frac {\int \left (401 e^{x/400}+\frac {1600 e^{x/400}}{x^2}-\frac {4 e^{x/400}}{x}+e^{x/400} x\right ) \, dx}{1200}\\ &=-\frac {1}{12} (1+2 x)^2-\frac {\int e^{x/400} x \, dx}{1200}+\frac {1}{300} \int \frac {e^{x/400}}{x} \, dx-\frac {401 \int e^{x/400} \, dx}{1200}-\frac {4}{3} \int \frac {e^{x/400}}{x^2} \, dx\\ &=-\frac {401 e^{x/400}}{3}+\frac {4 e^{x/400}}{3 x}-\frac {1}{3} e^{x/400} x-\frac {1}{12} (1+2 x)^2+\frac {\text {Ei}\left (\frac {x}{400}\right )}{300}-\frac {1}{300} \int \frac {e^{x/400}}{x} \, dx+\frac {1}{3} \int e^{x/400} \, dx\\ &=-\frac {e^{x/400}}{3}+\frac {4 e^{x/400}}{3 x}-\frac {1}{3} e^{x/400} x-\frac {1}{12} (1+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 1.31 \begin {gather*} -\frac {x}{3}-\frac {x^2}{3}-\frac {e^{x/400} \left (400-\frac {1600}{x}+400 x\right )}{1200} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 23, normalized size = 0.88 \begin {gather*} -\frac {x^{3} + x^{2} + {\left (x^{2} + x - 4\right )} e^{\left (\frac {1}{400} \, x\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 32, normalized size = 1.23 \begin {gather*} -\frac {x^{3} + x^{2} e^{\left (\frac {1}{400} \, x\right )} + x^{2} + x e^{\left (\frac {1}{400} \, x\right )} - 4 \, e^{\left (\frac {1}{400} \, x\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 0.96
method | result | size |
risch | \(-\frac {x^{2}}{3}-\frac {x}{3}-\frac {\left (x^{2}+x -4\right ) {\mathrm e}^{\frac {x}{400}}}{3 x}\) | \(25\) |
derivativedivides | \(-\frac {x^{2}}{3}-\frac {x}{3}+\frac {4 \,{\mathrm e}^{\frac {x}{400}}}{3 x}-\frac {{\mathrm e}^{\frac {x}{400}} x}{3}-\frac {{\mathrm e}^{\frac {x}{400}}}{3}\) | \(32\) |
default | \(-\frac {x^{2}}{3}-\frac {x}{3}+\frac {4 \,{\mathrm e}^{\frac {x}{400}}}{3 x}-\frac {{\mathrm e}^{\frac {x}{400}} x}{3}-\frac {{\mathrm e}^{\frac {x}{400}}}{3}\) | \(32\) |
norman | \(\frac {-\frac {x^{2}}{3}-\frac {x^{3}}{3}-\frac {{\mathrm e}^{\frac {x}{400}} x}{3}-\frac {{\mathrm e}^{\frac {x}{400}} x^{2}}{3}+\frac {4 \,{\mathrm e}^{\frac {x}{400}}}{3}}{x}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 37, normalized size = 1.42 \begin {gather*} -\frac {1}{3} \, x^{2} - \frac {1}{3} \, {\left (x - 400\right )} e^{\left (\frac {1}{400} \, x\right )} - \frac {1}{3} \, x + \frac {1}{300} \, {\rm Ei}\left (\frac {1}{400} \, x\right ) - \frac {401}{3} \, e^{\left (\frac {1}{400} \, x\right )} - \frac {1}{300} \, \Gamma \left (-1, -\frac {1}{400} \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 32, normalized size = 1.23 \begin {gather*} \frac {4\,{\mathrm {e}}^{x/400}}{3\,x}-\frac {{\mathrm {e}}^{x/400}}{3}-x\,\left (\frac {{\mathrm {e}}^{x/400}}{3}+\frac {1}{3}\right )-\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.85 \begin {gather*} - \frac {x^{2}}{3} - \frac {x}{3} + \frac {\left (- x^{2} - x + 4\right ) e^{\frac {x}{400}}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________