Optimal. Leaf size=30 \[ \frac {x}{9+\frac {4}{x}-x}-\log \left (-7-e^3+x-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.91, antiderivative size = 32, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 4, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {6688, 6742, 775, 6684} \begin {gather*} \frac {9 x+4}{-x^2+9 x+4}-\log \left (-x+\log (x)+e^3+7\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 775
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16-56 x+\left (55+8 e^3\right ) x^2+\left (146+9 e^3\right ) x^3-28 x^4+x^5+x^2 (8+9 x) \log (x)}{x \left (4+9 x-x^2\right )^2 \left (7 \left (1+\frac {e^3}{7}\right )-x+\log (x)\right )} \, dx\\ &=\int \left (\frac {x (8+9 x)}{\left (-4-9 x+x^2\right )^2}+\frac {-1+x}{x \left (7 \left (1+\frac {e^3}{7}\right )-x+\log (x)\right )}\right ) \, dx\\ &=\int \frac {x (8+9 x)}{\left (-4-9 x+x^2\right )^2} \, dx+\int \frac {-1+x}{x \left (7 \left (1+\frac {e^3}{7}\right )-x+\log (x)\right )} \, dx\\ &=\frac {4+9 x}{4+9 x-x^2}-\log \left (7+e^3-x+\log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 31, normalized size = 1.03 \begin {gather*} -\frac {4+9 x}{-4-9 x+x^2}-\log \left (7+e^3-x+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 36, normalized size = 1.20 \begin {gather*} -\frac {{\left (x^{2} - 9 \, x - 4\right )} \log \left (-x + e^{3} + \log \relax (x) + 7\right ) + 9 \, x + 4}{x^{2} - 9 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 56, normalized size = 1.87 \begin {gather*} -\frac {x^{2} \log \left (-x + e^{3} + \log \relax (x) + 7\right ) - 9 \, x \log \left (-x + e^{3} + \log \relax (x) + 7\right ) + 9 \, x - 4 \, \log \left (-x + e^{3} + \log \relax (x) + 7\right ) + 4}{x^{2} - 9 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 29, normalized size = 0.97
method | result | size |
norman | \(-\frac {x^{2}}{x^{2}-9 x -4}-\ln \left ({\mathrm e}^{3}-x +\ln \relax (x )+7\right )\) | \(29\) |
risch | \(-\frac {9 x +4}{x^{2}-9 x -4}-\ln \left ({\mathrm e}^{3}-x +\ln \relax (x )+7\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 30, normalized size = 1.00 \begin {gather*} -\frac {9 \, x + 4}{x^{2} - 9 \, x - 4} - \log \left (-x + e^{3} + \log \relax (x) + 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 31, normalized size = 1.03 \begin {gather*} \frac {9\,x+4}{-x^2+9\,x+4}-\ln \left ({\mathrm {e}}^3-x+\ln \relax (x)+7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 0.87 \begin {gather*} \frac {- 9 x - 4}{x^{2} - 9 x - 4} - \log {\left (- x + \log {\relax (x )} + 7 + e^{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________