Optimal. Leaf size=28 \[ \frac {x}{4+e^{x^2} \left (x+\frac {\log (2-5 x)}{4 \log (9)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 57.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-128+320 x) \log ^2(9)+e^{x^2} \left (-20 x \log (9)+\left (64 x^3-160 x^4\right ) \log ^2(9)\right )+e^{x^2} \left (-8+20 x+16 x^2-40 x^3\right ) \log (9) \log (2-5 x)}{(-512+1280 x) \log ^2(9)+e^{x^2} \left (-256 x+640 x^2\right ) \log ^2(9)+e^{2 x^2} \left (-32 x^2+80 x^3\right ) \log ^2(9)+\left (e^{x^2} (-64+160 x) \log (9)+e^{2 x^2} \left (-16 x+40 x^2\right ) \log (9)\right ) \log (2-5 x)+e^{2 x^2} (-2+5 x) \log ^2(2-5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \log (9) \left (16 (2-5 x) \log (9)+e^{x^2} x \left (5-16 x^2 \log (9)+40 x^3 \log (9)\right )+e^{x^2} \left (2-5 x-4 x^2+10 x^3\right ) \log (2-5 x)\right )}{(2-5 x) \left (4 \left (4+e^{x^2} x\right ) \log (9)+e^{x^2} \log (2-5 x)\right )^2} \, dx\\ &=(4 \log (9)) \int \frac {16 (2-5 x) \log (9)+e^{x^2} x \left (5-16 x^2 \log (9)+40 x^3 \log (9)\right )+e^{x^2} \left (2-5 x-4 x^2+10 x^3\right ) \log (2-5 x)}{(2-5 x) \left (4 \left (4+e^{x^2} x\right ) \log (9)+e^{x^2} \log (2-5 x)\right )^2} \, dx\\ &=(4 \log (9)) \int \left (\frac {16 x \log (9) \left (-5 \left (1-\frac {8 \log (9)}{5}\right )-20 x \log (9)+16 x^2 \log (9)-40 x^3 \log (9)+4 x \log (2-5 x)-10 x^2 \log (2-5 x)\right )}{(2-5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2}-\frac {5 x-16 x^3 \log (9)+40 x^4 \log (9)+2 \log (2-5 x)-5 x \log (2-5 x)-4 x^2 \log (2-5 x)+10 x^3 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}\right ) \, dx\\ &=-\left ((4 \log (9)) \int \frac {5 x-16 x^3 \log (9)+40 x^4 \log (9)+2 \log (2-5 x)-5 x \log (2-5 x)-4 x^2 \log (2-5 x)+10 x^3 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx\right )+\left (64 \log ^2(9)\right ) \int \frac {x \left (-5 \left (1-\frac {8 \log (9)}{5}\right )-20 x \log (9)+16 x^2 \log (9)-40 x^3 \log (9)+4 x \log (2-5 x)-10 x^2 \log (2-5 x)\right )}{(2-5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2} \, dx\\ &=-\left ((4 \log (9)) \int \left (\frac {5 x}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}-\frac {16 x^3 \log (9)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}+\frac {40 x^4 \log (9)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}+\frac {2 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}-\frac {5 x \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}-\frac {4 x^2 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}+\frac {10 x^3 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )}\right ) \, dx\right )+\left (64 \log ^2(9)\right ) \int \left (\frac {2 \left (-5 \left (1-\frac {8 \log (9)}{5}\right )-20 x \log (9)+16 x^2 \log (9)-40 x^3 \log (9)+4 x \log (2-5 x)-10 x^2 \log (2-5 x)\right )}{5 (2-5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2}+\frac {5 \left (1-\frac {8 \log (9)}{5}\right )+20 x \log (9)-16 x^2 \log (9)+40 x^3 \log (9)-4 x \log (2-5 x)+10 x^2 \log (2-5 x)}{5 (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2}\right ) \, dx\\ &=-\left ((8 \log (9)) \int \frac {\log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx\right )+(16 \log (9)) \int \frac {x^2 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx-(20 \log (9)) \int \frac {x}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx+(20 \log (9)) \int \frac {x \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx-(40 \log (9)) \int \frac {x^3 \log (2-5 x)}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx+\frac {1}{5} \left (64 \log ^2(9)\right ) \int \frac {5 \left (1-\frac {8 \log (9)}{5}\right )+20 x \log (9)-16 x^2 \log (9)+40 x^3 \log (9)-4 x \log (2-5 x)+10 x^2 \log (2-5 x)}{(4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2} \, dx+\frac {1}{5} \left (128 \log ^2(9)\right ) \int \frac {-5 \left (1-\frac {8 \log (9)}{5}\right )-20 x \log (9)+16 x^2 \log (9)-40 x^3 \log (9)+4 x \log (2-5 x)-10 x^2 \log (2-5 x)}{(2-5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )^2} \, dx+\left (64 \log ^2(9)\right ) \int \frac {x^3}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx-\left (160 \log ^2(9)\right ) \int \frac {x^4}{(-2+5 x) (4 x \log (9)+\log (2-5 x)) \left (16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 34, normalized size = 1.21 \begin {gather*} \frac {4 x \log (9)}{16 \log (9)+4 e^{x^2} x \log (9)+e^{x^2} \log (2-5 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 32, normalized size = 1.14 \begin {gather*} \frac {8 \, x \log \relax (3)}{8 \, x e^{\left (x^{2}\right )} \log \relax (3) + e^{\left (x^{2}\right )} \log \left (-5 \, x + 2\right ) + 32 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 32, normalized size = 1.14 \begin {gather*} \frac {8 \, x \log \relax (3)}{8 \, x e^{\left (x^{2}\right )} \log \relax (3) + e^{\left (x^{2}\right )} \log \left (-5 \, x + 2\right ) + 32 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.18
method | result | size |
risch | \(\frac {8 \ln \relax (3) x}{8 \ln \relax (3) {\mathrm e}^{x^{2}} x +{\mathrm e}^{x^{2}} \ln \left (-5 x +2\right )+32 \ln \relax (3)}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 32, normalized size = 1.14 \begin {gather*} \frac {8 \, x \log \relax (3)}{8 \, x e^{\left (x^{2}\right )} \log \relax (3) + e^{\left (x^{2}\right )} \log \left (-5 \, x + 2\right ) + 32 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {4\,{\ln \relax (3)}^2\,\left (320\,x-128\right )-{\mathrm {e}}^{x^2}\,\left (40\,x\,\ln \relax (3)-4\,{\ln \relax (3)}^2\,\left (64\,x^3-160\,x^4\right )\right )+2\,{\mathrm {e}}^{x^2}\,\ln \relax (3)\,\ln \left (2-5\,x\right )\,\left (-40\,x^3+16\,x^2+20\,x-8\right )}{{\mathrm {e}}^{2\,x^2}\,\left (5\,x-2\right )\,{\ln \left (2-5\,x\right )}^2+\left (2\,{\mathrm {e}}^{x^2}\,\ln \relax (3)\,\left (160\,x-64\right )-2\,{\mathrm {e}}^{2\,x^2}\,\ln \relax (3)\,\left (16\,x-40\,x^2\right )\right )\,\ln \left (2-5\,x\right )+4\,{\ln \relax (3)}^2\,\left (1280\,x-512\right )-4\,{\mathrm {e}}^{2\,x^2}\,{\ln \relax (3)}^2\,\left (32\,x^2-80\,x^3\right )-4\,{\mathrm {e}}^{x^2}\,{\ln \relax (3)}^2\,\left (256\,x-640\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 29, normalized size = 1.04 \begin {gather*} \frac {8 x \log {\relax (3 )}}{\left (8 x \log {\relax (3 )} + \log {\left (2 - 5 x \right )}\right ) e^{x^{2}} + 32 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________