Optimal. Leaf size=20 \[ \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \]
________________________________________________________________________________________
Rubi [F] time = 2.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{2 x^2}} \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}} \left (-2+4 x+e^{2 x^2} \left (-16 x-4 x^2+4 x^3\right ) \log \left (16+8 x-7 x^2-2 x^3+x^4\right )\right )}{-4-x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{e^{2 x^2}} (-1+2 x) \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-4-x+x^2}+4 e^{e^{2 x^2}+2 x^2} x \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}} \log \left (\left (4+x-x^2\right )^2\right )\right ) \, dx\\ &=2 \int \frac {e^{e^{2 x^2}} (-1+2 x) \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-4-x+x^2} \, dx+4 \int e^{e^{2 x^2}+2 x^2} x \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}} \log \left (\left (4+x-x^2\right )^2\right ) \, dx\\ &=2 \int \left (\frac {2 e^{e^{2 x^2}} \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x}+\frac {2 e^{e^{2 x^2}} \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x}\right ) \, dx-4 \int \frac {2 (1-2 x) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{4+x-x^2} \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ &=4 \int \frac {e^{e^{2 x^2}} \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x} \, dx+4 \int \frac {e^{e^{2 x^2}} \left (16+8 x-7 x^2-2 x^3+x^4\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x} \, dx-8 \int \frac {(1-2 x) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{4+x-x^2} \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ &=4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x} \, dx+4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x} \, dx-8 \int \left (-\frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-4-x+x^2}+\frac {2 x \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-4-x+x^2}\right ) \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ &=4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x} \, dx+4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x} \, dx+8 \int \frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-4-x+x^2} \, dx-16 \int \frac {x \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-4-x+x^2} \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ &=4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x} \, dx+4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x} \, dx+8 \int \left (-\frac {2 \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{\sqrt {17} \left (1+\sqrt {17}-2 x\right )}-\frac {2 \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{\sqrt {17} \left (-1+\sqrt {17}+2 x\right )}\right ) \, dx-16 \int \left (\frac {\left (1+\frac {1}{\sqrt {17}}\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-1-\sqrt {17}+2 x}+\frac {\left (1-\frac {1}{\sqrt {17}}\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-1+\sqrt {17}+2 x}\right ) \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ &=4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1-\sqrt {17}+2 x} \, dx+4 \int \frac {e^{e^{2 x^2}} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}}}{-1+\sqrt {17}+2 x} \, dx-\frac {16 \int \frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{1+\sqrt {17}-2 x} \, dx}{\sqrt {17}}-\frac {16 \int \frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-1+\sqrt {17}+2 x} \, dx}{\sqrt {17}}-\frac {1}{17} \left (16 \left (17-\sqrt {17}\right )\right ) \int \frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-1+\sqrt {17}+2 x} \, dx-\frac {1}{17} \left (16 \left (17+\sqrt {17}\right )\right ) \int \frac {\int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx}{-1-\sqrt {17}+2 x} \, dx+\left (4 \log \left (\left (4+x-x^2\right )^2\right )\right ) \int e^{e^{2 x^2}+2 x^2} x \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 20, normalized size = 1.00 \begin {gather*} \left (\left (4+x-x^2\right )^2\right )^{e^{e^{2 x^2}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 1.30 \begin {gather*} {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}^{e^{\left (e^{\left (2 \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, {\left (x^{3} - x^{2} - 4 \, x\right )} e^{\left (2 \, x^{2}\right )} \log \left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right ) + 2 \, x - 1\right )} {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}^{e^{\left (e^{\left (2 \, x^{2}\right )}\right )}} e^{\left (e^{\left (2 \, x^{2}\right )}\right )}}{x^{2} - x - 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 107, normalized size = 5.35
method | result | size |
risch | \({\mathrm e}^{\frac {\left (-i \pi \mathrm {csgn}\left (i \left (x^{2}-x -4\right )^{2}\right )^{3}+2 i \pi \mathrm {csgn}\left (i \left (x^{2}-x -4\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x^{2}-x -4\right )\right )-i \pi \,\mathrm {csgn}\left (i \left (x^{2}-x -4\right )^{2}\right ) \mathrm {csgn}\left (i \left (x^{2}-x -4\right )\right )^{2}+4 \ln \left (x^{2}-x -4\right )\right ) {\mathrm e}^{{\mathrm e}^{2 x^{2}}}}{2}}\) | \(107\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 18, normalized size = 0.90 \begin {gather*} {\left (x^{2} - x - 4\right )}^{2 \, e^{\left (e^{\left (2 \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.51, size = 26, normalized size = 1.30 \begin {gather*} {\left (x^4-2\,x^3-7\,x^2+8\,x+16\right )}^{{\mathrm {e}}^{{\mathrm {e}}^{2\,x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________