Optimal. Leaf size=28 \[ e^{\frac {2 \left (x-x^3\right )}{x+\frac {8}{3+\log (4) \log \left (x^2\right )}}} \]
________________________________________________________________________________________
Rubi [F] time = 6.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (3 x-3 x^3+\left (x-x^3\right ) \log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (48-144 x^2-36 x^3+\left (32-32 x^2\right ) \log (4)+\left (16-48 x^2-24 x^3\right ) \log (4) \log \left (x^2\right )-4 x^3 \log ^2(4) \log ^2\left (x^2\right )\right )}{64+48 x+9 x^2+\left (16 x+6 x^2\right ) \log (4) \log \left (x^2\right )+x^2 \log ^2(4) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (48-144 x^2-36 x^3+\left (32-32 x^2\right ) \log (4)+\left (16-48 x^2-24 x^3\right ) \log (4) \log \left (x^2\right )-4 x^3 \log ^2(4) \log ^2\left (x^2\right )\right )}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (-4 \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x-\frac {32 \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (-1+x^2\right ) (-4+x \log (4))}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2}+\frac {16 \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (1+x^2\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )}\right ) \, dx\\ &=-\left (4 \int \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x \, dx\right )+16 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (1+x^2\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )} \, dx-32 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \left (-1+x^2\right ) (-4+x \log (4))}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx\\ &=-\left (4 \int \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x \, dx\right )+16 \int \left (\frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )}+\frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \, dx-32 \int \left (\frac {4 \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2}-\frac {4 \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2}-\frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) \log (4)}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2}+\frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x^2 \log (4)}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x \, dx\right )+16 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )} \, dx+16 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x}{8+3 x+x \log (4) \log \left (x^2\right )} \, dx-128 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right )}{x \left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx+128 \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx+(32 \log (4)) \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right )}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx-(32 \log (4)) \int \frac {\exp \left (-\frac {2 x \left (-1+x^2\right ) \left (3+\log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}\right ) x^2}{\left (8+3 x+x \log (4) \log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.66, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {2 \left (3 x-3 x^3+\left (x-x^3\right ) \log (4) \log \left (x^2\right )\right )}{8+3 x+x \log (4) \log \left (x^2\right )}} \left (48-144 x^2-36 x^3+\left (32-32 x^2\right ) \log (4)+\left (16-48 x^2-24 x^3\right ) \log (4) \log \left (x^2\right )-4 x^3 \log ^2(4) \log ^2\left (x^2\right )\right )}{64+48 x+9 x^2+\left (16 x+6 x^2\right ) \log (4) \log \left (x^2\right )+x^2 \log ^2(4) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 43, normalized size = 1.54 \begin {gather*} e^{\left (-\frac {2 \, {\left (3 \, x^{3} + 2 \, {\left (x^{3} - x\right )} \log \relax (2) \log \left (x^{2}\right ) - 3 \, x\right )}}{2 \, x \log \relax (2) \log \left (x^{2}\right ) + 3 \, x + 8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.09, size = 94, normalized size = 3.36 \begin {gather*} e^{\left (-\frac {4 \, x^{3} \log \relax (2) \log \left (x^{2}\right )}{2 \, x \log \relax (2) \log \left (x^{2}\right ) + 3 \, x + 8} - \frac {6 \, x^{3}}{2 \, x \log \relax (2) \log \left (x^{2}\right ) + 3 \, x + 8} + \frac {4 \, x \log \relax (2) \log \left (x^{2}\right )}{2 \, x \log \relax (2) \log \left (x^{2}\right ) + 3 \, x + 8} + \frac {6 \, x}{2 \, x \log \relax (2) \log \left (x^{2}\right ) + 3 \, x + 8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.13, size = 37, normalized size = 1.32
method | result | size |
risch | \({\mathrm e}^{-\frac {2 x \left (x -1\right ) \left (x +1\right ) \left (2 \ln \relax (2) \ln \left (x^{2}\right )+3\right )}{2 x \ln \relax (2) \ln \left (x^{2}\right )+3 x +8}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 17.46, size = 591, normalized size = 21.11 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.88, size = 76, normalized size = 2.71 \begin {gather*} {\mathrm {e}}^{\frac {6\,x}{3\,x+2\,x\,\ln \left (x^2\right )\,\ln \relax (2)+8}}\,{\mathrm {e}}^{-\frac {6\,x^3}{3\,x+2\,x\,\ln \left (x^2\right )\,\ln \relax (2)+8}}\,{\left (x^8\right )}^{\frac {x\,\ln \relax (2)-x^3\,\ln \relax (2)}{3\,x+2\,x\,\ln \left (x^2\right )\,\ln \relax (2)+8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.81, size = 44, normalized size = 1.57 \begin {gather*} e^{\frac {2 \left (- 3 x^{3} + 3 x + \left (- 2 x^{3} + 2 x\right ) \log {\relax (2 )} \log {\left (x^{2} \right )}\right )}{2 x \log {\relax (2 )} \log {\left (x^{2} \right )} + 3 x + 8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________