Optimal. Leaf size=28 \[ 2 e^{\frac {1}{-x-4 \log (3)+\log \left (x+e^x \log \left (x^2\right )\right )}} (4+x) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 0.50, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {1}{-x-4 \log (3)+\log \left (x+e^x \log \left (x^2\right )\right )}} \left (e^x (-16-4 x)-8 x+6 x^2+2 x^3+2 x^4+16 x^3 \log (3)+32 x^2 \log ^2(3)+e^x \left (2 x^3+16 x^2 \log (3)+32 x \log ^2(3)\right ) \log \left (x^2\right )+\left (-4 x^3-16 x^2 \log (3)+e^x \left (-4 x^2-16 x \log (3)\right ) \log \left (x^2\right )\right ) \log \left (x+e^x \log \left (x^2\right )\right )+\left (2 x^2+2 e^x x \log \left (x^2\right )\right ) \log ^2\left (x+e^x \log \left (x^2\right )\right )\right )}{x^4+8 x^3 \log (3)+16 x^2 \log ^2(3)+e^x \left (x^3+8 x^2 \log (3)+16 x \log ^2(3)\right ) \log \left (x^2\right )+\left (-2 x^3-8 x^2 \log (3)+e^x \left (-2 x^2-8 x \log (3)\right ) \log \left (x^2\right )\right ) \log \left (x+e^x \log \left (x^2\right )\right )+\left (x^2+e^x x \log \left (x^2\right )\right ) \log ^2\left (x+e^x \log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.00 \begin {gather*} 2 \, {\left (x + 4\right )} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (e^{x} \log \left (x^{2}\right ) + x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.20, size = 108, normalized size = 3.86 \begin {gather*} 2 \, x e^{\left (\frac {x - \log \left (e^{x} \log \left (x^{2}\right ) + x\right )}{4 \, {\left (x \log \relax (3) + 4 \, \log \relax (3)^{2} - \log \relax (3) \log \left (e^{x} \log \left (x^{2}\right ) + x\right )\right )}} - \frac {1}{4 \, \log \relax (3)}\right )} + 8 \, e^{\left (\frac {x - \log \left (e^{x} \log \left (x^{2}\right ) + x\right )}{4 \, {\left (x \log \relax (3) + 4 \, \log \relax (3)^{2} - \log \relax (3) \log \left (e^{x} \log \left (x^{2}\right ) + x\right )\right )}} - \frac {1}{4 \, \log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 59, normalized size = 2.11
method | result | size |
risch | \(\left (2 x +8\right ) {\mathrm e}^{-\frac {1}{-\ln \left ({\mathrm e}^{x} \left (2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )+x \right )+4 \ln \relax (3)+x}}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2 \, x^{4} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} + \frac {16 \, x^{3} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )} \log \relax (3)}{x^{2} - x - 2 \, e^{x}} + \frac {32 \, x^{2} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )} \log \relax (3)^{2}}{x^{2} - x - 2 \, e^{x}} + \frac {4 \, x^{3} e^{\left (x - \frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )} \log \relax (x)}{x^{2} - x - 2 \, e^{x}} + \frac {32 \, x^{2} e^{\left (x - \frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )} \log \relax (3) \log \relax (x)}{x^{2} - x - 2 \, e^{x}} + \frac {64 \, x e^{\left (x - \frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )} \log \relax (3)^{2} \log \relax (x)}{x^{2} - x - 2 \, e^{x}} + \frac {2 \, x^{3} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} + \frac {6 \, x^{2} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} - \frac {4 \, x e^{\left (x - \frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} - \frac {8 \, x e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} - \frac {16 \, e^{\left (x - \frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} - x - 2 \, e^{x}} + 2 \, \int -\frac {{\left (2 \, {\left (x + 4 \, \log \relax (3)\right )} \log \left (2 \, e^{x} \log \relax (x) + x\right ) - \log \left (2 \, e^{x} \log \relax (x) + x\right )^{2}\right )} e^{\left (-\frac {1}{x + 4 \, \log \relax (3) - \log \left (2 \, e^{x} \log \relax (x) + x\right )}\right )}}{x^{2} + 8 \, x \log \relax (3) + 16 \, \log \relax (3)^{2} - 2 \, {\left (x + 4 \, \log \relax (3)\right )} \log \left (2 \, e^{x} \log \relax (x) + x\right ) + \log \left (2 \, e^{x} \log \relax (x) + x\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {1}{x+4\,\ln \relax (3)-\ln \left (x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )}}\,\left (32\,x^2\,{\ln \relax (3)}^2-8\,x+{\ln \left (x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )}^2\,\left (2\,x^2+2\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^x\right )-{\mathrm {e}}^x\,\left (4\,x+16\right )+16\,x^3\,\ln \relax (3)-\ln \left (x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )\,\left (16\,x^2\,\ln \relax (3)+4\,x^3+\ln \left (x^2\right )\,{\mathrm {e}}^x\,\left (4\,x^2+16\,\ln \relax (3)\,x\right )\right )+6\,x^2+2\,x^3+2\,x^4+\ln \left (x^2\right )\,{\mathrm {e}}^x\,\left (2\,x^3+16\,\ln \relax (3)\,x^2+32\,{\ln \relax (3)}^2\,x\right )\right )}{16\,x^2\,{\ln \relax (3)}^2+8\,x^3\,\ln \relax (3)+{\ln \left (x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )}^2\,\left (x^2+x\,\ln \left (x^2\right )\,{\mathrm {e}}^x\right )-\ln \left (x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )\,\left (8\,x^2\,\ln \relax (3)+2\,x^3+\ln \left (x^2\right )\,{\mathrm {e}}^x\,\left (2\,x^2+8\,\ln \relax (3)\,x\right )\right )+x^4+\ln \left (x^2\right )\,{\mathrm {e}}^x\,\left (x^3+8\,\ln \relax (3)\,x^2+16\,{\ln \relax (3)}^2\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________