Optimal. Leaf size=22 \[ \frac {20 e^x+2 x}{6+e^{e^x}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12+e^{e^x} \left (2-20 e^{2 x}+e^x (20-2 x)\right )+e^x (80+40 x)}{36+e^{2 e^x}+24 x+4 x^2+e^{e^x} (12+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12+e^{e^x} \left (2-20 e^{2 x}+e^x (20-2 x)\right )+e^x (80+40 x)}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ &=\int \left (-\frac {20 e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2}+\frac {2 \left (6+e^{e^x}\right )}{\left (6+e^{e^x}+2 x\right )^2}-\frac {2 e^x \left (-40-10 e^{e^x}-20 x+e^{e^x} x\right )}{\left (6+e^{e^x}+2 x\right )^2}\right ) \, dx\\ &=2 \int \frac {6+e^{e^x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx-2 \int \frac {e^x \left (-40-10 e^{e^x}-20 x+e^{e^x} x\right )}{\left (6+e^{e^x}+2 x\right )^2} \, dx-20 \int \frac {e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ &=2 \int \left (-\frac {2 x}{\left (6+e^{e^x}+2 x\right )^2}+\frac {1}{6+e^{e^x}+2 x}\right ) \, dx-2 \int \left (\frac {e^x (-10+x)}{6+e^{e^x}+2 x}-\frac {2 e^x \left (-10+3 x+x^2\right )}{\left (6+e^{e^x}+2 x\right )^2}\right ) \, dx-20 \int \frac {e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ &=2 \int \frac {1}{6+e^{e^x}+2 x} \, dx-2 \int \frac {e^x (-10+x)}{6+e^{e^x}+2 x} \, dx-4 \int \frac {x}{\left (6+e^{e^x}+2 x\right )^2} \, dx+4 \int \frac {e^x \left (-10+3 x+x^2\right )}{\left (6+e^{e^x}+2 x\right )^2} \, dx-20 \int \frac {e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ &=2 \int \frac {1}{6+e^{e^x}+2 x} \, dx-2 \int \left (-\frac {10 e^x}{6+e^{e^x}+2 x}+\frac {e^x x}{6+e^{e^x}+2 x}\right ) \, dx-4 \int \frac {x}{\left (6+e^{e^x}+2 x\right )^2} \, dx+4 \int \left (-\frac {10 e^x}{\left (6+e^{e^x}+2 x\right )^2}+\frac {3 e^x x}{\left (6+e^{e^x}+2 x\right )^2}+\frac {e^x x^2}{\left (6+e^{e^x}+2 x\right )^2}\right ) \, dx-20 \int \frac {e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ &=2 \int \frac {1}{6+e^{e^x}+2 x} \, dx-2 \int \frac {e^x x}{6+e^{e^x}+2 x} \, dx-4 \int \frac {x}{\left (6+e^{e^x}+2 x\right )^2} \, dx+4 \int \frac {e^x x^2}{\left (6+e^{e^x}+2 x\right )^2} \, dx+12 \int \frac {e^x x}{\left (6+e^{e^x}+2 x\right )^2} \, dx-20 \int \frac {e^{e^x+2 x}}{\left (6+e^{e^x}+2 x\right )^2} \, dx+20 \int \frac {e^x}{6+e^{e^x}+2 x} \, dx-40 \int \frac {e^x}{\left (6+e^{e^x}+2 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 21, normalized size = 0.95 \begin {gather*} \frac {2 \left (10 e^x+x\right )}{6+e^{e^x}+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 18, normalized size = 0.82 \begin {gather*} \frac {2 \, {\left (x + 10 \, e^{x}\right )}}{2 \, x + e^{\left (e^{x}\right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.82 \begin {gather*} \frac {2 \, {\left (x + 10 \, e^{x}\right )}}{2 \, x + e^{\left (e^{x}\right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.86
method | result | size |
risch | \(\frac {2 x +20 \,{\mathrm e}^{x}}{2 x +{\mathrm e}^{{\mathrm e}^{x}}+6}\) | \(19\) |
norman | \(\frac {2 x +20 \,{\mathrm e}^{x}}{2 x +{\mathrm e}^{{\mathrm e}^{x}}+6}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 18, normalized size = 0.82 \begin {gather*} \frac {2 \, {\left (x + 10 \, e^{x}\right )}}{2 \, x + e^{\left (e^{x}\right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (40\,x+80\right )-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (20\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x\,\left (2\,x-20\right )-2\right )+12}{24\,x+{\mathrm {e}}^{2\,{\mathrm {e}}^x}+4\,x^2+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (4\,x+12\right )+36} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.77 \begin {gather*} \frac {2 x + 20 e^{x}}{2 x + e^{e^{x}} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________