Optimal. Leaf size=20 \[ 50 e^{-\frac {x^2}{2 (3+e-x)^2}} x \]
________________________________________________________________________________________
Rubi [F] time = 1.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {2 x^2}{36+4 e^2+e (24-8 x)-24 x+4 x^2}\right ) \left (1350+50 e^3+e^2 (450-150 x)-1350 x+300 x^2-50 x^3+e \left (1350-900 x+100 x^2\right )\right )}{27+e^3+e^2 (9-3 x)-27 x+9 x^2-x^3+e \left (27-18 x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 e^{-\frac {x^2}{2 (3+e-x)^2}} \left ((3+e)^3-3 (3+e)^2 x+2 (3+e) x^2-x^3\right )}{(3+e-x)^3} \, dx\\ &=50 \int \frac {e^{-\frac {x^2}{2 (3+e-x)^2}} \left ((3+e)^3-3 (3+e)^2 x+2 (3+e) x^2-x^3\right )}{(3+e-x)^3} \, dx\\ &=50 \int \left (e^{-\frac {x^2}{2 (3+e-x)^2}}-\frac {e^{-\frac {x^2}{2 (3+e-x)^2}} (3+e)^3}{(3+e-x)^3}+\frac {2 e^{-\frac {x^2}{2 (3+e-x)^2}} (3+e)^2}{(3+e-x)^2}+\frac {(-3-e) e^{-\frac {x^2}{2 (3+e-x)^2}}}{3+e-x}\right ) \, dx\\ &=50 \int e^{-\frac {x^2}{2 (3+e-x)^2}} \, dx-(50 (3+e)) \int \frac {e^{-\frac {x^2}{2 (3+e-x)^2}}}{3+e-x} \, dx+\left (100 (3+e)^2\right ) \int \frac {e^{-\frac {x^2}{2 (3+e-x)^2}}}{(3+e-x)^2} \, dx-\left (50 (3+e)^3\right ) \int \frac {e^{-\frac {x^2}{2 (3+e-x)^2}}}{(3+e-x)^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.84, size = 20, normalized size = 1.00 \begin {gather*} 50 e^{-\frac {x^2}{2 (3+e-x)^2}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 1.40 \begin {gather*} 50 \, x e^{\left (-\frac {x^{2}}{2 \, {\left (x^{2} - 2 \, {\left (x - 3\right )} e - 6 \, x + e^{2} + 9\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.77, size = 30, normalized size = 1.50 \begin {gather*} 50 \, x e^{\left (-\frac {x^{2}}{2 \, {\left (x^{2} - 2 \, x e - 6 \, x + e^{2} + 6 \, e + 9\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 35, normalized size = 1.75
method | result | size |
gosper | \(50 x \,{\mathrm e}^{-\frac {x^{2}}{2 \left (-2 x \,{\mathrm e}+x^{2}+{\mathrm e}^{2}+6 \,{\mathrm e}-6 x +9\right )}}\) | \(35\) |
risch | \(50 x \,{\mathrm e}^{\frac {x^{2}}{4 x \,{\mathrm e}-2 x^{2}-2 \,{\mathrm e}^{2}-12 \,{\mathrm e}+12 x -18}}\) | \(35\) |
norman | \(\frac {\left (\left (-100 \,{\mathrm e}-300\right ) x^{2}+\left (50 \,{\mathrm e}^{2}+300 \,{\mathrm e}+450\right ) x +50 x^{3}\right ) {\mathrm e}^{-\frac {2 x^{2}}{4 \,{\mathrm e}^{2}+\left (-8 x +24\right ) {\mathrm e}+4 x^{2}-24 x +36}}}{\left (3-x +{\mathrm e}\right )^{2}}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 100, normalized size = 5.00 \begin {gather*} 50 \, x e^{\left (-\frac {e^{2}}{2 \, {\left (x^{2} - 2 \, x {\left (e + 3\right )} + e^{2} + 6 \, e + 9\right )}} - \frac {3 \, e}{x^{2} - 2 \, x {\left (e + 3\right )} + e^{2} + 6 \, e + 9} - \frac {e}{x - e - 3} - \frac {9}{2 \, {\left (x^{2} - 2 \, x {\left (e + 3\right )} + e^{2} + 6 \, e + 9\right )}} - \frac {3}{x - e - 3} - \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.27, size = 34, normalized size = 1.70 \begin {gather*} 50\,x\,{\mathrm {e}}^{-\frac {x^2}{12\,\mathrm {e}-12\,x+2\,{\mathrm {e}}^2-4\,x\,\mathrm {e}+2\,x^2+18}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 32, normalized size = 1.60 \begin {gather*} 50 x e^{- \frac {2 x^{2}}{4 x^{2} - 24 x + e \left (24 - 8 x\right ) + 4 e^{2} + 36}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________