Optimal. Leaf size=20 \[ e^{\frac {9}{e^{10} \log ^2\left (e^5+x\right )}} (1+\log (3)) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {12, 6706} \begin {gather*} (1+\log (3)) e^{\frac {9}{e^{10} \log ^2\left (x+e^5\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((18 (1+\log (3))) \int \frac {e^{\frac {9}{e^{10} \log ^2\left (e^5+x\right )}}}{\left (e^{15}+e^{10} x\right ) \log ^3\left (e^5+x\right )} \, dx\right )\\ &=e^{\frac {9}{e^{10} \log ^2\left (e^5+x\right )}} (1+\log (3))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 1.00 \begin {gather*} e^{\frac {9}{e^{10} \log ^2\left (e^5+x\right )}} (1+\log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 17, normalized size = 0.85 \begin {gather*} {\left (\log \relax (3) + 1\right )} e^{\left (\frac {9 \, e^{\left (-10\right )}}{\log \left (x + e^{5}\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 20, normalized size = 1.00
method | result | size |
norman | \(\left (\ln \relax (3)+1\right ) {\mathrm e}^{\frac {9 \,{\mathrm e}^{-10}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}}\) | \(20\) |
risch | \({\mathrm e}^{\frac {9 \,{\mathrm e}^{-10}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}} \ln \relax (3)+{\mathrm e}^{\frac {9 \,{\mathrm e}^{-10}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 17, normalized size = 0.85 \begin {gather*} {\left (\log \relax (3) + 1\right )} e^{\left (\frac {9 \, e^{\left (-10\right )}}{\log \left (x + e^{5}\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.67, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{\frac {9\,{\mathrm {e}}^{-10}}{{\ln \left (x+{\mathrm {e}}^5\right )}^2}}\,\left (\ln \relax (3)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 19, normalized size = 0.95 \begin {gather*} \left (1 + \log {\relax (3 )}\right ) e^{\frac {9}{e^{10} \log {\left (x + e^{5} \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________