Optimal. Leaf size=20 \[ e^{4+x+\frac {1}{4} x \left (3-x^2+x^3\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{4} \left (x^4-x^3+7 x+16\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{\frac {1}{4} \left (16+7 x-x^3+x^4\right )} \left (7-3 x^2+4 x^3\right ) \, dx\\ &=e^{\frac {1}{4} \left (16+7 x-x^3+x^4\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.95 \begin {gather*} e^{\frac {1}{4} \left (16+7 x-x^3+x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} - \frac {1}{4} \, x^{3} + \frac {7}{4} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} - \frac {1}{4} \, x^{3} + \frac {7}{4} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 0.85
method | result | size |
gosper | \({\mathrm e}^{\frac {1}{4} x^{4}-\frac {1}{4} x^{3}+\frac {7}{4} x +4}\) | \(17\) |
norman | \({\mathrm e}^{\frac {1}{4} x^{4}-\frac {1}{4} x^{3}+\frac {7}{4} x +4}\) | \(17\) |
risch | \({\mathrm e}^{\frac {1}{4} x^{4}-\frac {1}{4} x^{3}+\frac {7}{4} x +4}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} - \frac {1}{4} \, x^{3} + \frac {7}{4} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 19, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {7\,x}{4}}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {x^3}{4}}\,{\mathrm {e}}^{\frac {x^4}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.85 \begin {gather*} e^{\frac {x^{4}}{4} - \frac {x^{3}}{4} + \frac {7 x}{4} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________