Optimal. Leaf size=18 \[ \frac {5}{3 x \left (\frac {9}{2}+e^x x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 17, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6688, 12, 6687} \begin {gather*} \frac {10}{3 x \left (2 e^x x+9\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 \left (-9-2 e^x x (2+x)\right )}{3 x^2 \left (9+2 e^x x\right )^2} \, dx\\ &=\frac {10}{3} \int \frac {-9-2 e^x x (2+x)}{x^2 \left (9+2 e^x x\right )^2} \, dx\\ &=\frac {10}{3 x \left (9+2 e^x x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 17, normalized size = 0.94 \begin {gather*} \frac {10}{3 x \left (9+2 e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 16, normalized size = 0.89 \begin {gather*} \frac {10}{3 \, {\left (2 \, x e^{\left (x + \log \relax (x)\right )} + 9 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.66, size = 15, normalized size = 0.83 \begin {gather*} \frac {10}{3 \, {\left (2 \, x^{2} e^{x} + 9 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.83
method | result | size |
risch | \(\frac {10}{3 x \left (2 \,{\mathrm e}^{x} x +9\right )}\) | \(15\) |
norman | \(\frac {10}{3 x \left (2 \,{\mathrm e}^{x +\ln \relax (x )}+9\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 15, normalized size = 0.83 \begin {gather*} \frac {10}{3 \, {\left (2 \, x^{2} e^{x} + 9 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 14, normalized size = 0.78 \begin {gather*} \frac {10}{3\,x\,\left (2\,x\,{\mathrm {e}}^x+9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.67 \begin {gather*} \frac {10}{6 x^{2} e^{x} + 27 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________