3.2.16 \(\int \frac {1-12 x-24 x^2}{(10 x-12 x^2-12 x^3+x \log (x)) \log (10-12 x-12 x^2+\log (x)) \log (\log (10-12 x-12 x^2+\log (x)))} \, dx\)

Optimal. Leaf size=13 \[ \log (\log (\log (10-12 x (1+x)+\log (x)))) \]

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 15, normalized size of antiderivative = 1.15, number of steps used = 1, number of rules used = 1, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6684} \begin {gather*} \log \left (\log \left (\log \left (-12 x^2-12 x+\log (x)+10\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 12*x - 24*x^2)/((10*x - 12*x^2 - 12*x^3 + x*Log[x])*Log[10 - 12*x - 12*x^2 + Log[x]]*Log[Log[10 - 12*
x - 12*x^2 + Log[x]]]),x]

[Out]

Log[Log[Log[10 - 12*x - 12*x^2 + Log[x]]]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\log \left (\log \left (\log \left (10-12 x-12 x^2+\log (x)\right )\right )\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 15, normalized size = 1.15 \begin {gather*} \log \left (\log \left (\log \left (10-12 x-12 x^2+\log (x)\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 12*x - 24*x^2)/((10*x - 12*x^2 - 12*x^3 + x*Log[x])*Log[10 - 12*x - 12*x^2 + Log[x]]*Log[Log[10
 - 12*x - 12*x^2 + Log[x]]]),x]

[Out]

Log[Log[Log[10 - 12*x - 12*x^2 + Log[x]]]]

________________________________________________________________________________________

fricas [A]  time = 1.46, size = 15, normalized size = 1.15 \begin {gather*} \log \left (\log \left (\log \left (-12 \, x^{2} - 12 \, x + \log \relax (x) + 10\right )\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x^2-12*x+1)/(x*log(x)-12*x^3-12*x^2+10*x)/log(log(x)-12*x^2-12*x+10)/log(log(log(x)-12*x^2-12*x
+10)),x, algorithm="fricas")

[Out]

log(log(log(-12*x^2 - 12*x + log(x) + 10)))

________________________________________________________________________________________

giac [A]  time = 0.36, size = 15, normalized size = 1.15 \begin {gather*} \log \left (\log \left (\log \left (-12 \, x^{2} - 12 \, x + \log \relax (x) + 10\right )\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x^2-12*x+1)/(x*log(x)-12*x^3-12*x^2+10*x)/log(log(x)-12*x^2-12*x+10)/log(log(log(x)-12*x^2-12*x
+10)),x, algorithm="giac")

[Out]

log(log(log(-12*x^2 - 12*x + log(x) + 10)))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 16, normalized size = 1.23




method result size



risch \(\ln \left (\ln \left (\ln \left (\ln \relax (x )-12 x^{2}-12 x +10\right )\right )\right )\) \(16\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-24*x^2-12*x+1)/(x*ln(x)-12*x^3-12*x^2+10*x)/ln(ln(x)-12*x^2-12*x+10)/ln(ln(ln(x)-12*x^2-12*x+10)),x,meth
od=_RETURNVERBOSE)

[Out]

ln(ln(ln(ln(x)-12*x^2-12*x+10)))

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 15, normalized size = 1.15 \begin {gather*} \log \left (\log \left (\log \left (-12 \, x^{2} - 12 \, x + \log \relax (x) + 10\right )\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x^2-12*x+1)/(x*log(x)-12*x^3-12*x^2+10*x)/log(log(x)-12*x^2-12*x+10)/log(log(log(x)-12*x^2-12*x
+10)),x, algorithm="maxima")

[Out]

log(log(log(-12*x^2 - 12*x + log(x) + 10)))

________________________________________________________________________________________

mupad [B]  time = 0.70, size = 15, normalized size = 1.15 \begin {gather*} \ln \left (\ln \left (\ln \left (\ln \relax (x)-12\,x-12\,x^2+10\right )\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(12*x + 24*x^2 - 1)/(log(log(log(x) - 12*x - 12*x^2 + 10))*log(log(x) - 12*x - 12*x^2 + 10)*(10*x + x*log
(x) - 12*x^2 - 12*x^3)),x)

[Out]

log(log(log(log(x) - 12*x - 12*x^2 + 10)))

________________________________________________________________________________________

sympy [A]  time = 2.43, size = 17, normalized size = 1.31 \begin {gather*} \log {\left (\log {\left (\log {\left (- 12 x^{2} - 12 x + \log {\relax (x )} + 10 \right )} \right )} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x**2-12*x+1)/(x*ln(x)-12*x**3-12*x**2+10*x)/ln(ln(x)-12*x**2-12*x+10)/ln(ln(ln(x)-12*x**2-12*x+
10)),x)

[Out]

log(log(log(-12*x**2 - 12*x + log(x) + 10)))

________________________________________________________________________________________