Optimal. Leaf size=27 \[ x \left (4 x^2 \left (2-9 e^{-x} x\right )+3 (5-x \log (7))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 12, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6742, 2176, 2194} \begin {gather*} -36 e^{-x} x^4+8 x^3-3 x^2 \log (7)+15 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-144 e^{-x} x^3+36 e^{-x} x^4+3 \left (5+8 x^2-2 x \log (7)\right )\right ) \, dx\\ &=3 \int \left (5+8 x^2-2 x \log (7)\right ) \, dx+36 \int e^{-x} x^4 \, dx-144 \int e^{-x} x^3 \, dx\\ &=15 x+8 x^3+144 e^{-x} x^3-36 e^{-x} x^4-3 x^2 \log (7)+144 \int e^{-x} x^3 \, dx-432 \int e^{-x} x^2 \, dx\\ &=15 x+432 e^{-x} x^2+8 x^3-36 e^{-x} x^4-3 x^2 \log (7)+432 \int e^{-x} x^2 \, dx-864 \int e^{-x} x \, dx\\ &=15 x+864 e^{-x} x+8 x^3-36 e^{-x} x^4-3 x^2 \log (7)-864 \int e^{-x} \, dx+864 \int e^{-x} x \, dx\\ &=864 e^{-x}+15 x+8 x^3-36 e^{-x} x^4-3 x^2 \log (7)+864 \int e^{-x} \, dx\\ &=15 x+8 x^3-36 e^{-x} x^4-3 x^2 \log (7)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 30, normalized size = 1.11 \begin {gather*} 3 \left (5 x+\frac {8 x^3}{3}-12 e^{-x} x^4-x^2 \log (7)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.61, size = 32, normalized size = 1.19 \begin {gather*} -{\left (36 \, x^{4} - {\left (8 \, x^{3} - 3 \, x^{2} \log \relax (7) + 15 \, x\right )} e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 25, normalized size = 0.93 \begin {gather*} -36 \, x^{4} e^{\left (-x\right )} + 8 \, x^{3} - 3 \, x^{2} \log \relax (7) + 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 0.96
method | result | size |
default | \(8 x^{3}+15 x -3 x^{2} \ln \relax (7)-36 x^{4} {\mathrm e}^{-x}\) | \(26\) |
risch | \(8 x^{3}+15 x -3 x^{2} \ln \relax (7)-36 x^{4} {\mathrm e}^{-x}\) | \(26\) |
norman | \(\left (-36 x^{4}+15 \,{\mathrm e}^{x} x +8 \,{\mathrm e}^{x} x^{3}-3 x^{2} \ln \relax (7) {\mathrm e}^{x}\right ) {\mathrm e}^{-x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 59, normalized size = 2.19 \begin {gather*} 8 \, x^{3} - 3 \, x^{2} \log \relax (7) - 36 \, {\left (x^{4} + 4 \, x^{3} + 12 \, x^{2} + 24 \, x + 24\right )} e^{\left (-x\right )} + 144 \, {\left (x^{3} + 3 \, x^{2} + 6 \, x + 6\right )} e^{\left (-x\right )} + 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 25, normalized size = 0.93 \begin {gather*} 15\,x-36\,x^4\,{\mathrm {e}}^{-x}-3\,x^2\,\ln \relax (7)+8\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 24, normalized size = 0.89 \begin {gather*} - 36 x^{4} e^{- x} + 8 x^{3} - 3 x^{2} \log {\relax (7 )} + 15 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________