Optimal. Leaf size=30 \[ 3 e^{\frac {2 e^{16}}{5-x+20 \left (x+\frac {5}{x-\log (2)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 6.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-5 x-19 x^2+(5+19 x) \log (2)}\right ) \left (e^{16} \left (600-114 x^2\right )+228 e^{16} x \log (2)-114 e^{16} \log ^2(2)\right )}{10000+1000 x+3825 x^2+190 x^3+361 x^4+\left (-1000-3850 x-380 x^2-722 x^3\right ) \log (2)+\left (25+190 x+361 x^2\right ) \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) \left (-114 e^{16} x^2+228 e^{16} x \log (2)+6 e^{16} \left (100-19 \log ^2(2)\right )\right )}{361 x^4+38 x^3 (5-19 \log (2))+10 x (5-19 \log (2)) (20-\log (2))+25 (20-\log (2))^2+x^2 \left (3825-380 \log (2)+361 \log ^2(2)\right )} \, dx\\ &=\int \left (\frac {6 \exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{-19 x^2-x (5-19 \log (2))-5 (20-\log (2))}+\frac {6 \exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) \left (200-5 \log (2)-19 \log ^2(2)+x (5+19 \log (2))\right )}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2}\right ) \, dx\\ &=6 \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{-19 x^2-x (5-19 \log (2))-5 (20-\log (2))} \, dx+6 \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) \left (200-5 \log (2)-19 \log ^2(2)+x (5+19 \log (2))\right )}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2} \, dx\\ &=6 \int \left (-\frac {38 i \exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{\sqrt {7575-190 \log (2)-361 \log ^2(2)} \left (5+38 x-19 \log (2)+i \sqrt {7575-190 \log (2)-361 \log ^2(2)}\right )}-\frac {38 i \exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{\sqrt {7575-190 \log (2)-361 \log ^2(2)} \left (-5-38 x+19 \log (2)+i \sqrt {7575-190 \log (2)-361 \log ^2(2)}\right )}\right ) \, dx+6 \int \left (\frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) x (5+19 \log (2))}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2}+\frac {200 \exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) \left (1-\frac {1}{200} \log (2) (5+\log (524288))\right )}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2}\right ) \, dx\\ &=(6 (5+19 \log (2))) \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right ) x}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2} \, dx-\frac {(228 i) \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{5+38 x-19 \log (2)+i \sqrt {7575-190 \log (2)-361 \log ^2(2)}} \, dx}{\sqrt {7575-190 \log (2)-361 \log ^2(2)}}-\frac {(228 i) \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{-5-38 x+19 \log (2)+i \sqrt {7575-190 \log (2)-361 \log ^2(2)}} \, dx}{\sqrt {7575-190 \log (2)-361 \log ^2(2)}}+(6 (200-\log (2) (5+\log (524288)))) \int \frac {\exp \left (16+\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-19 x^2-x (5-19 \log (2))+\log (32)}\right )}{\left (19 x^2+x (5-19 \log (2))+5 (20-\log (2))\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.64, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-2 e^{16} x+2 e^{16} \log (2)}{-100-5 x-19 x^2+(5+19 x) \log (2)}} \left (e^{16} \left (600-114 x^2\right )+228 e^{16} x \log (2)-114 e^{16} \log ^2(2)\right )}{10000+1000 x+3825 x^2+190 x^3+361 x^4+\left (-1000-3850 x-380 x^2-722 x^3\right ) \log (2)+\left (25+190 x+361 x^2\right ) \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 37, normalized size = 1.23 \begin {gather*} 3 \, e^{\left (\frac {2 \, {\left (x e^{16} - e^{16} \log \relax (2)\right )}}{19 \, x^{2} - {\left (19 \, x + 5\right )} \log \relax (2) + 5 \, x + 100}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 57, normalized size = 1.90 \begin {gather*} 3 \, e^{\left (\frac {2 \, x e^{16}}{19 \, x^{2} - 19 \, x \log \relax (2) + 5 \, x - 5 \, \log \relax (2) + 100} - \frac {2 \, e^{16} \log \relax (2)}{19 \, x^{2} - 19 \, x \log \relax (2) + 5 \, x - 5 \, \log \relax (2) + 100}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 35, normalized size = 1.17
method | result | size |
gosper | \(3 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{16} \left (\ln \relax (2)-x \right )}{19 x \ln \relax (2)-19 x^{2}+5 \ln \relax (2)-5 x -100}}\) | \(35\) |
risch | \(3 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{16} \left (\ln \relax (2)-x \right )}{19 x \ln \relax (2)-19 x^{2}+5 \ln \relax (2)-5 x -100}}\) | \(35\) |
norman | \(\frac {\left (15 \ln \relax (2)-300\right ) {\mathrm e}^{\frac {2 \,{\mathrm e}^{16} \ln \relax (2)-2 x \,{\mathrm e}^{16}}{\left (19 x +5\right ) \ln \relax (2)-19 x^{2}-5 x -100}}+\left (57 \ln \relax (2)-15\right ) x \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{16} \ln \relax (2)-2 x \,{\mathrm e}^{16}}{\left (19 x +5\right ) \ln \relax (2)-19 x^{2}-5 x -100}}-57 x^{2} {\mathrm e}^{\frac {2 \,{\mathrm e}^{16} \ln \relax (2)-2 x \,{\mathrm e}^{16}}{\left (19 x +5\right ) \ln \relax (2)-19 x^{2}-5 x -100}}}{19 x \ln \relax (2)-19 x^{2}+5 \ln \relax (2)-5 x -100}\) | \(146\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 59, normalized size = 1.97 \begin {gather*} 3 \, e^{\left (\frac {2 \, x e^{16}}{19 \, x^{2} - x {\left (19 \, \log \relax (2) - 5\right )} - 5 \, \log \relax (2) + 100} - \frac {2 \, e^{16} \log \relax (2)}{19 \, x^{2} - x {\left (19 \, \log \relax (2) - 5\right )} - 5 \, \log \relax (2) + 100}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.55, size = 58, normalized size = 1.93 \begin {gather*} \frac {3\,{\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^{16}}{5\,x-5\,\ln \relax (2)-19\,x\,\ln \relax (2)+19\,x^2+100}}}{2^{\frac {2\,{\mathrm {e}}^{16}}{5\,x-5\,\ln \relax (2)-19\,x\,\ln \relax (2)+19\,x^2+100}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.97, size = 36, normalized size = 1.20 \begin {gather*} 3 e^{\frac {- 2 x e^{16} + 2 e^{16} \log {\relax (2 )}}{- 19 x^{2} - 5 x + \left (19 x + 5\right ) \log {\relax (2 )} - 100}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________