Optimal. Leaf size=20 \[ e^5+e^{2 e^{4 e^{2 x}}}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-1+16 e^{2 e^{4 e^{2 x}}+4 e^{2 x}+2 x}\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+16 \int e^{2 e^{4 e^{2 x}}+4 e^{2 x}+2 x} \, dx\\ &=-x+8 \operatorname {Subst}\left (\int e^{2 \left (e^{4 x}+2 x\right )} \, dx,x,e^{2 x}\right )\\ &=-x+4 \operatorname {Subst}\left (\int e^{2 \left (e^{2 x}+x\right )} \, dx,x,2 e^{2 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.85 \begin {gather*} e^{2 e^{4 e^{2 x}}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 49, normalized size = 2.45 \begin {gather*} -{\left (x e^{\left (2 \, x + 4 \, e^{\left (2 \, x\right )}\right )} - e^{\left (2 \, x + 4 \, e^{\left (2 \, x\right )} + 2 \, e^{\left (4 \, e^{\left (2 \, x\right )}\right )}\right )}\right )} e^{\left (-2 \, x - 4 \, e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 16 \, e^{\left (2 \, x + 4 \, e^{\left (2 \, x\right )} + 2 \, e^{\left (4 \, e^{\left (2 \, x\right )}\right )}\right )} - 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.75
method | result | size |
default | \(-x +{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{2 x}}}\) | \(15\) |
norman | \(-x +{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{2 x}}}\) | \(15\) |
risch | \(-x +{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{2 x}}}\) | \(15\) |
derivativedivides | \(-\ln \left ({\mathrm e}^{x}\right )+{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{2 x}}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 14, normalized size = 0.70 \begin {gather*} -x + e^{\left (2 \, e^{\left (4 \, e^{\left (2 \, x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 14, normalized size = 0.70 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{4\,{\mathrm {e}}^{2\,x}}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 12, normalized size = 0.60 \begin {gather*} - x + e^{2 e^{4 e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________