Optimal. Leaf size=18 \[ e^{\frac {5}{-4+\frac {4}{(-2+x) x^2}}} \]
________________________________________________________________________________________
Rubi [F] time = 0.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {(10-5 x) x^2}{-4+x^2 (-8+4 x)}} x^2 (-20+15 x)}{4 x+x^2 \left (16 x-8 x^2\right )+x^4 \left (16 x-16 x^2+4 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {(10-5 x) x^2}{-4+x^2 (-8+4 x)}} x (-20+15 x)}{4+16 x^2-8 x^3+16 x^4-16 x^5+4 x^6} \, dx\\ &=\int \frac {e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x (-20+15 x)}{4 \left (1+2 x^2-x^3\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x (-20+15 x)}{\left (1+2 x^2-x^3\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {20 e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x}{\left (-1-2 x^2+x^3\right )^2}+\frac {15 e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x^2}{\left (-1-2 x^2+x^3\right )^2}\right ) \, dx\\ &=\frac {15}{4} \int \frac {e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x^2}{\left (-1-2 x^2+x^3\right )^2} \, dx-5 \int \frac {e^{\frac {(10-5 x) x^2}{-4-8 x^2+4 x^3}} x}{\left (-1-2 x^2+x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 1.22 \begin {gather*} e^{-\frac {5}{4}-\frac {5}{4 \left (-1-2 x^2+x^3\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 24, normalized size = 1.33 \begin {gather*} e^{\left (-\frac {5 \, {\left (x^{3} - 2 \, x^{2}\right )}}{4 \, {\left (x^{3} - 2 \, x^{2} - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 36, normalized size = 2.00 \begin {gather*} e^{\left (-\frac {5 \, x^{3}}{4 \, {\left (x^{3} - 2 \, x^{2} - 1\right )}} + \frac {5 \, x^{2}}{2 \, {\left (x^{3} - 2 \, x^{2} - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 1.22
method | result | size |
gosper | \({\mathrm e}^{-\frac {5 \left (x -2\right ) x^{2}}{4 \left (x^{3}-2 x^{2}-1\right )}}\) | \(22\) |
risch | \({\mathrm e}^{-\frac {5 \left (x -2\right ) x^{2}}{4 \left (x^{3}-2 x^{2}-1\right )}}\) | \(22\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {\left (-5 x +10\right ) x^{2}}{\left (4 x -8\right ) x^{2}-4}}-2 x^{2} {\mathrm e}^{\frac {\left (-5 x +10\right ) x^{2}}{\left (4 x -8\right ) x^{2}-4}}-{\mathrm e}^{\frac {\left (-5 x +10\right ) x^{2}}{\left (4 x -8\right ) x^{2}-4}}}{x^{3}-2 x^{2}-1}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 17, normalized size = 0.94 \begin {gather*} e^{\left (-\frac {5}{4 \, {\left (x^{3} - 2 \, x^{2} - 1\right )}} - \frac {5}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 41, normalized size = 2.28 \begin {gather*} {\mathrm {e}}^{-\frac {5\,x^2}{-2\,x^3+4\,x^2+2}}\,{\mathrm {e}}^{\frac {5\,x^3}{-4\,x^3+8\,x^2+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 19, normalized size = 1.06 \begin {gather*} e^{\frac {x^{2} \left (10 - 5 x\right )}{x^{2} \left (4 x - 8\right ) - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________