Optimal. Leaf size=25 \[ \frac {3}{2} e^{\frac {5 (3+e) (2-x)}{\log (4)}} x \log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.32, antiderivative size = 132, normalized size of antiderivative = 5.28, number of steps used = 8, number of rules used = 7, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 2227, 2194, 6, 2187, 2176, 2554} \begin {gather*} \frac {e^{\frac {5 (3+e) (2-x)}{\log (4)}} (15 (3+e) x-\log (64)) \log \left (x^2\right )}{10 (3+e)}+\frac {3 \log (4) e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log \left (x^2\right )}{10 (3+e)}+\frac {3 \log (4) e^{\frac {10 (3+e)}{\log (4)}-\frac {5 (3+e) x}{\log (4)}}}{5 (3+e)}-\frac {3 \log (4) e^{\frac {5 (3+e) (2-x)}{\log (4)}}}{5 (3+e)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2176
Rule 2187
Rule 2194
Rule 2227
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (6 e^{\frac {30+e (10-5 x)-15 x}{\log (4)}} \log (4)+e^{\frac {30+e (10-5 x)-15 x}{\log (4)}} (-45 x-15 e x+3 \log (4)) \log \left (x^2\right )\right ) \, dx}{2 \log (4)}\\ &=3 \int e^{\frac {30+e (10-5 x)-15 x}{\log (4)}} \, dx+\frac {\int e^{\frac {30+e (10-5 x)-15 x}{\log (4)}} (-45 x-15 e x+3 \log (4)) \log \left (x^2\right ) \, dx}{2 \log (4)}\\ &=3 \int e^{\frac {10 (3+e)-5 (3+e) x}{\log (4)}} \, dx+\frac {\int e^{\frac {30+e (10-5 x)-15 x}{\log (4)}} ((-45-15 e) x+3 \log (4)) \log \left (x^2\right ) \, dx}{2 \log (4)}\\ &=-\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4)}{5 (3+e)}+\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4) \log \left (x^2\right )}{10 (3+e)}+\frac {e^{\frac {5 (3+e) (2-x)}{\log (4)}} (15 (3+e) x-\log (64)) \log \left (x^2\right )}{10 (3+e)}-\frac {\int 6 e^{\frac {10 (3+e)}{\log (4)}-\frac {5 (3+e) x}{\log (4)}} \log (4) \, dx}{2 \log (4)}\\ &=-\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4)}{5 (3+e)}+\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4) \log \left (x^2\right )}{10 (3+e)}+\frac {e^{\frac {5 (3+e) (2-x)}{\log (4)}} (15 (3+e) x-\log (64)) \log \left (x^2\right )}{10 (3+e)}-3 \int e^{\frac {10 (3+e)}{\log (4)}-\frac {5 (3+e) x}{\log (4)}} \, dx\\ &=\frac {3 e^{\frac {10 (3+e)}{\log (4)}-\frac {5 (3+e) x}{\log (4)}} \log (4)}{5 (3+e)}-\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4)}{5 (3+e)}+\frac {3 e^{\frac {5 (3+e) (2-x)}{\log (4)}} \log (4) \log \left (x^2\right )}{10 (3+e)}+\frac {e^{\frac {5 (3+e) (2-x)}{\log (4)}} (15 (3+e) x-\log (64)) \log \left (x^2\right )}{10 (3+e)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 27, normalized size = 1.08 \begin {gather*} \frac {3 e^{-\frac {5 (3+e) (-2+x)}{\log (4)}} x \log (4) \log \left (x^2\right )}{\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 25, normalized size = 1.00 \begin {gather*} \frac {3}{2} \, x e^{\left (-\frac {5 \, {\left ({\left (x - 2\right )} e + 3 \, x - 6\right )}}{2 \, \log \relax (2)}\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.60, size = 198, normalized size = 7.92 \begin {gather*} \frac {3 \, {\left (\frac {4 \, e^{\left (-\frac {5 \, x e}{2 \, \log \relax (2)} - \frac {15 \, x}{2 \, \log \relax (2)} + \frac {5 \, e}{\log \relax (2)} + \frac {15}{\log \relax (2)} + 1\right )} \log \relax (2)^{2}}{e^{2} + 3 \, e} - \frac {4 \, e^{\left (-\frac {5 \, {\left ({\left (x - 2\right )} e + 3 \, x - 6\right )}}{2 \, \log \relax (2)}\right )} \log \relax (2)^{2}}{e + 3} + {\left (\frac {{\left (5 \, x e \log \relax (2) + 15 \, x \log \relax (2) + 2 \, \log \relax (2)^{2}\right )} e^{\left (-\frac {5 \, x e + 15 \, x - 10 \, e - 2 \, \log \relax (2) - 30}{2 \, \log \relax (2)}\right )}}{e^{2} + 6 \, e + 9} + \frac {{\left (15 \, x e \log \relax (2) - 2 \, e \log \relax (2)^{2} + 45 \, x \log \relax (2)\right )} e^{\left (-\frac {5 \, {\left (x e + 3 \, x - 2 \, e - 6\right )}}{2 \, \log \relax (2)}\right )}}{e^{2} + 6 \, e + 9}\right )} \log \left (x^{2}\right )\right )}}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 28, normalized size = 1.12
method | result | size |
norman | \(\frac {3 x \,{\mathrm e}^{\frac {\left (-5 x +10\right ) {\mathrm e}-15 x +30}{2 \ln \relax (2)}} \ln \left (x^{2}\right )}{2}\) | \(28\) |
risch | \(3 x \,{\mathrm e}^{-\frac {5 \left (x -2\right ) \left (3+{\mathrm e}\right )}{2 \ln \relax (2)}} \ln \relax (x )-\frac {3 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right ) x \,{\mathrm e}^{-\frac {5 \left (x -2\right ) \left (3+{\mathrm e}\right )}{2 \ln \relax (2)}}}{4}\) | \(78\) |
default | \(\frac {\frac {24 \ln \relax (2)^{2} {\mathrm e}^{\frac {\left (-5 x +10\right ) {\mathrm e}-15 x +30}{2 \ln \relax (2)}}}{5 \left (3+{\mathrm e}\right )}+12 \ln \relax (2) x \,{\mathrm e}^{\frac {\left (-5 x +10\right ) {\mathrm e}-15 x +30}{2 \ln \relax (2)}} \ln \relax (x )+6 \ln \relax (2) \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) x \,{\mathrm e}^{\frac {\left (-5 x +10\right ) {\mathrm e}-15 x +30}{2 \ln \relax (2)}}+\frac {24 \ln \relax (2)^{2} {\mathrm e}^{\frac {\left (-5 x +10\right ) {\mathrm e}-15 x +30}{2 \ln \relax (2)}}}{-5 \,{\mathrm e}-15}}{4 \ln \relax (2)}\) | \(135\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 130, normalized size = 5.20 \begin {gather*} \frac {3 \, {\left (5 \, x e^{\left (-\frac {5 \, x e}{2 \, \log \relax (2)} - \frac {15 \, x}{2 \, \log \relax (2)} + \frac {5 \, e}{\log \relax (2)} + \frac {15}{\log \relax (2)}\right )} \log \relax (2) \log \left (x^{2}\right ) - \frac {4 \, e^{\left (-\frac {5 \, {\left ({\left (x - 2\right )} e + 3 \, x - 6\right )}}{2 \, \log \relax (2)}\right )} \log \relax (2)^{2}}{e + 3} + \frac {4 \, e^{\left (-\frac {5 \, x e}{2 \, \log \relax (2)} - \frac {15 \, x}{2 \, \log \relax (2)} + \frac {5 \, e}{\log \relax (2)} + \frac {15}{\log \relax (2)}\right )} \log \relax (2)}{\frac {e}{\log \relax (2)} + \frac {3}{\log \relax (2)}}\right )}}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.84, size = 41, normalized size = 1.64 \begin {gather*} \frac {3\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^{-\frac {15\,x}{2\,\ln \relax (2)}}\,{\mathrm {e}}^{-\frac {5\,x\,\mathrm {e}}{2\,\ln \relax (2)}}\,{\mathrm {e}}^{\frac {15}{\ln \relax (2)}}\,{\mathrm {e}}^{\frac {5\,\mathrm {e}}{\ln \relax (2)}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 31, normalized size = 1.24 \begin {gather*} \frac {3 x e^{\frac {- \frac {15 x}{2} + \frac {e \left (10 - 5 x\right )}{2} + 15}{\log {\relax (2 )}}} \log {\left (x^{2} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________