Optimal. Leaf size=25 \[ \frac {\log \left (\left (-4+\left (\frac {4}{3-x}+x\right )^2\right )^2\right )}{\log (2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-208 x-60 x^2+108 x^3-36 x^4+4 x^5\right ) \log (2 x)+\left (-60+164 x-57 x^2-15 x^3+9 x^4-x^5\right ) \log \left (\frac {400-1920 x+2424 x^2-48 x^3-607 x^4+132 x^5+30 x^6-12 x^7+x^8}{81-108 x+54 x^2-12 x^3+x^4}\right )}{\left (60 x-164 x^2+57 x^3+15 x^4-9 x^5+x^6\right ) \log ^2(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {4 \left (-52-15 x+27 x^2-9 x^3+x^4\right ) \log (2 x)}{60-164 x+57 x^2+15 x^3-9 x^4+x^5}-\frac {\log \left (\frac {\left (-20+48 x-3 x^2-6 x^3+x^4\right )^2}{(-3+x)^4}\right )}{x}}{\log ^2(2 x)} \, dx\\ &=\int \left (\frac {4 (-4+x) (1+x) \left (13-6 x+x^2\right )}{(-3+x) \left (2-5 x+x^2\right ) \left (-10-x+x^2\right ) \log (2 x)}-\frac {\log \left (\frac {\left (-20+48 x-3 x^2-6 x^3+x^4\right )^2}{(-3+x)^4}\right )}{x \log ^2(2 x)}\right ) \, dx\\ &=4 \int \frac {(-4+x) (1+x) \left (13-6 x+x^2\right )}{(-3+x) \left (2-5 x+x^2\right ) \left (-10-x+x^2\right ) \log (2 x)} \, dx-\int \frac {\log \left (\frac {\left (-20+48 x-3 x^2-6 x^3+x^4\right )^2}{(-3+x)^4}\right )}{x \log ^2(2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 1.36 \begin {gather*} \frac {\log \left (\frac {\left (-20+48 x-3 x^2-6 x^3+x^4\right )^2}{(-3+x)^4}\right )}{\log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 67, normalized size = 2.68 \begin {gather*} \frac {\log \left (\frac {x^{8} - 12 \, x^{7} + 30 \, x^{6} + 132 \, x^{5} - 607 \, x^{4} - 48 \, x^{3} + 2424 \, x^{2} - 1920 \, x + 400}{x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81}\right )}{\log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.61, size = 74, normalized size = 2.96 \begin {gather*} \frac {\log \left (x^{8} - 12 \, x^{7} + 30 \, x^{6} + 132 \, x^{5} - 607 \, x^{4} - 48 \, x^{3} + 2424 \, x^{2} - 1920 \, x + 400\right )}{\log \left (2 \, x\right )} - \frac {\log \left (x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81\right )}{\log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.65, size = 621, normalized size = 24.84
method | result | size |
risch | \(\frac {2 \ln \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )}{\ln \left (2 x \right )}-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}}{\left (x -3\right )^{4}}\right )^{3}+i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}}{\left (x -3\right )^{4}}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{4}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )\right ) \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x -3\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -3\right )^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x -3\right )^{3}\right )^{3}-i \pi \mathrm {csgn}\left (i \left (x -3\right )^{4}\right )^{3}+i \pi \,\mathrm {csgn}\left (i \left (x -3\right )^{3}\right ) \mathrm {csgn}\left (i \left (x -3\right )^{4}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -3\right )^{3}\right )-i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{3}\right ) \mathrm {csgn}\left (i \left (x -3\right )^{4}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{\left (x -3\right )^{4}}\right ) \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}}{\left (x -3\right )^{4}}\right )-i \pi \mathrm {csgn}\left (i \left (x -3\right )\right )^{2} \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (\frac {i}{\left (x -3\right )^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{4}-6 x^{3}-3 x^{2}+48 x -20\right )^{2}}{\left (x -3\right )^{4}}\right )^{2}+8 \ln \left (x -3\right )}{2 \ln \left (2 x \right )}\) | \(621\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 34, normalized size = 1.36 \begin {gather*} \frac {2 \, {\left (\log \left (x^{2} - x - 10\right ) + \log \left (x^{2} - 5 \, x + 2\right ) - 2 \, \log \left (x - 3\right )\right )}}{\log \relax (2) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.22, size = 67, normalized size = 2.68 \begin {gather*} \frac {\ln \left (\frac {x^8-12\,x^7+30\,x^6+132\,x^5-607\,x^4-48\,x^3+2424\,x^2-1920\,x+400}{x^4-12\,x^3+54\,x^2-108\,x+81}\right )}{\ln \left (2\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 63, normalized size = 2.52 \begin {gather*} \frac {\log {\left (\frac {x^{8} - 12 x^{7} + 30 x^{6} + 132 x^{5} - 607 x^{4} - 48 x^{3} + 2424 x^{2} - 1920 x + 400}{x^{4} - 12 x^{3} + 54 x^{2} - 108 x + 81} \right )}}{\log {\left (2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________