Optimal. Leaf size=30 \[ e^x \left (-3+2 x+e^4 \left (\frac {3}{2}+e^x-x+3 x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 163, normalized size of antiderivative = 5.43, number of steps used = 52, number of rules used = 4, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {12, 2194, 2196, 2176} \begin {gather*} 9 e^{x+8} x^4+12 e^{x+4} x^3-6 e^{x+8} x^3+4 e^x x^2-22 e^{x+4} x^2+10 e^{x+8} x^2+6 e^{2 x+8} x^2-12 e^x x+12 e^{x+4} x-3 e^{x+8} x-2 e^{2 x+8} x+9 e^x-9 e^{x+4}+\frac {9 e^{x+8}}{4}-2 e^{2 x+4}+3 e^{2 x+8}+e^{3 x+8}-4 e^{2 x+4} (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (12 e^{8+3 x}+e^{2 x} \left (e^4 (-32+32 x)+e^8 \left (16+32 x+48 x^2\right )\right )+e^x \left (-12-16 x+16 x^2+e^4 \left (12-128 x+56 x^2+48 x^3\right )+e^8 \left (-3+68 x-32 x^2+120 x^3+36 x^4\right )\right )\right ) \, dx\\ &=\frac {1}{4} \int e^{2 x} \left (e^4 (-32+32 x)+e^8 \left (16+32 x+48 x^2\right )\right ) \, dx+\frac {1}{4} \int e^x \left (-12-16 x+16 x^2+e^4 \left (12-128 x+56 x^2+48 x^3\right )+e^8 \left (-3+68 x-32 x^2+120 x^3+36 x^4\right )\right ) \, dx+3 \int e^{8+3 x} \, dx\\ &=e^{8+3 x}+\frac {1}{4} \int \left (32 e^{4+2 x} (-1+x)+16 e^{8+2 x} \left (1+2 x+3 x^2\right )\right ) \, dx+\frac {1}{4} \int \left (-12 e^x-16 e^x x+16 e^x x^2+4 e^{4+x} \left (3-32 x+14 x^2+12 x^3\right )+e^{8+x} \left (-3+68 x-32 x^2+120 x^3+36 x^4\right )\right ) \, dx\\ &=e^{8+3 x}+\frac {1}{4} \int e^{8+x} \left (-3+68 x-32 x^2+120 x^3+36 x^4\right ) \, dx-3 \int e^x \, dx-4 \int e^x x \, dx+4 \int e^x x^2 \, dx+4 \int e^{8+2 x} \left (1+2 x+3 x^2\right ) \, dx+8 \int e^{4+2 x} (-1+x) \, dx+\int e^{4+x} \left (3-32 x+14 x^2+12 x^3\right ) \, dx\\ &=-3 e^x+e^{8+3 x}-4 e^{4+2 x} (1-x)-4 e^x x+4 e^x x^2+\frac {1}{4} \int \left (-3 e^{8+x}+68 e^{8+x} x-32 e^{8+x} x^2+120 e^{8+x} x^3+36 e^{8+x} x^4\right ) \, dx+4 \int e^x \, dx-4 \int e^{4+2 x} \, dx+4 \int \left (e^{8+2 x}+2 e^{8+2 x} x+3 e^{8+2 x} x^2\right ) \, dx-8 \int e^x x \, dx+\int \left (3 e^{4+x}-32 e^{4+x} x+14 e^{4+x} x^2+12 e^{4+x} x^3\right ) \, dx\\ &=e^x-2 e^{4+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x+4 e^x x^2-\frac {3}{4} \int e^{8+x} \, dx+3 \int e^{4+x} \, dx+4 \int e^{8+2 x} \, dx+8 \int e^x \, dx+8 \int e^{8+2 x} x \, dx-8 \int e^{8+x} x^2 \, dx+9 \int e^{8+x} x^4 \, dx+12 \int e^{8+2 x} x^2 \, dx+12 \int e^{4+x} x^3 \, dx+14 \int e^{4+x} x^2 \, dx+17 \int e^{8+x} x \, dx+30 \int e^{8+x} x^3 \, dx-32 \int e^{4+x} x \, dx\\ &=9 e^x+3 e^{4+x}-\frac {3 e^{8+x}}{4}-2 e^{4+2 x}+2 e^{8+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x-32 e^{4+x} x+17 e^{8+x} x+4 e^{8+2 x} x+4 e^x x^2+14 e^{4+x} x^2-8 e^{8+x} x^2+6 e^{8+2 x} x^2+12 e^{4+x} x^3+30 e^{8+x} x^3+9 e^{8+x} x^4-4 \int e^{8+2 x} \, dx-12 \int e^{8+2 x} x \, dx+16 \int e^{8+x} x \, dx-17 \int e^{8+x} \, dx-28 \int e^{4+x} x \, dx+32 \int e^{4+x} \, dx-36 \int e^{4+x} x^2 \, dx-36 \int e^{8+x} x^3 \, dx-90 \int e^{8+x} x^2 \, dx\\ &=9 e^x+35 e^{4+x}-\frac {71 e^{8+x}}{4}-2 e^{4+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x-60 e^{4+x} x+33 e^{8+x} x-2 e^{8+2 x} x+4 e^x x^2-22 e^{4+x} x^2-98 e^{8+x} x^2+6 e^{8+2 x} x^2+12 e^{4+x} x^3-6 e^{8+x} x^3+9 e^{8+x} x^4+6 \int e^{8+2 x} \, dx-16 \int e^{8+x} \, dx+28 \int e^{4+x} \, dx+72 \int e^{4+x} x \, dx+108 \int e^{8+x} x^2 \, dx+180 \int e^{8+x} x \, dx\\ &=9 e^x+63 e^{4+x}-\frac {135 e^{8+x}}{4}-2 e^{4+2 x}+3 e^{8+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x+12 e^{4+x} x+213 e^{8+x} x-2 e^{8+2 x} x+4 e^x x^2-22 e^{4+x} x^2+10 e^{8+x} x^2+6 e^{8+2 x} x^2+12 e^{4+x} x^3-6 e^{8+x} x^3+9 e^{8+x} x^4-72 \int e^{4+x} \, dx-180 \int e^{8+x} \, dx-216 \int e^{8+x} x \, dx\\ &=9 e^x-9 e^{4+x}-\frac {855 e^{8+x}}{4}-2 e^{4+2 x}+3 e^{8+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x+12 e^{4+x} x-3 e^{8+x} x-2 e^{8+2 x} x+4 e^x x^2-22 e^{4+x} x^2+10 e^{8+x} x^2+6 e^{8+2 x} x^2+12 e^{4+x} x^3-6 e^{8+x} x^3+9 e^{8+x} x^4+216 \int e^{8+x} \, dx\\ &=9 e^x-9 e^{4+x}+\frac {9 e^{8+x}}{4}-2 e^{4+2 x}+3 e^{8+2 x}+e^{8+3 x}-4 e^{4+2 x} (1-x)-12 e^x x+12 e^{4+x} x-3 e^{8+x} x-2 e^{8+2 x} x+4 e^x x^2-22 e^{4+x} x^2+10 e^{8+x} x^2+6 e^{8+2 x} x^2+12 e^{4+x} x^3-6 e^{8+x} x^3+9 e^{8+x} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 35, normalized size = 1.17 \begin {gather*} \frac {1}{4} e^x \left (-6+2 e^{4+x}+4 x+e^4 \left (3-2 x+6 x^2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 91, normalized size = 3.03 \begin {gather*} {\left ({\left (6 \, x^{2} - 2 \, x + 3\right )} e^{8} + 2 \, {\left (2 \, x - 3\right )} e^{4}\right )} e^{\left (2 \, x\right )} + \frac {1}{4} \, {\left (16 \, x^{2} + {\left (36 \, x^{4} - 24 \, x^{3} + 40 \, x^{2} - 12 \, x + 9\right )} e^{8} + 4 \, {\left (12 \, x^{3} - 22 \, x^{2} + 12 \, x - 9\right )} e^{4} - 48 \, x + 36\right )} e^{x} + e^{\left (3 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 96, normalized size = 3.20 \begin {gather*} {\left (6 \, x^{2} - 2 \, x + 3\right )} e^{\left (2 \, x + 8\right )} + 2 \, {\left (2 \, x - 3\right )} e^{\left (2 \, x + 4\right )} + \frac {1}{4} \, {\left (36 \, x^{4} - 24 \, x^{3} + 40 \, x^{2} - 12 \, x + 9\right )} e^{\left (x + 8\right )} + {\left (12 \, x^{3} - 22 \, x^{2} + 12 \, x - 9\right )} e^{\left (x + 4\right )} + {\left (4 \, x^{2} - 12 \, x + 9\right )} e^{x} + e^{\left (3 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 107, normalized size = 3.57
method | result | size |
risch | \({\mathrm e}^{3 x +8}+\frac {\left (24 x^{2} {\mathrm e}^{8}-8 x \,{\mathrm e}^{8}+12 \,{\mathrm e}^{8}+16 x \,{\mathrm e}^{4}-24 \,{\mathrm e}^{4}\right ) {\mathrm e}^{2 x}}{4}+\frac {\left (36 x^{4} {\mathrm e}^{8}-24 x^{3} {\mathrm e}^{8}+40 x^{2} {\mathrm e}^{8}+48 x^{3} {\mathrm e}^{4}-12 x \,{\mathrm e}^{8}-88 x^{2} {\mathrm e}^{4}+9 \,{\mathrm e}^{8}+48 x \,{\mathrm e}^{4}+16 x^{2}-36 \,{\mathrm e}^{4}-48 x +36\right ) {\mathrm e}^{x}}{4}\) | \(107\) |
norman | \(\left (3 \,{\mathrm e}^{8}-6 \,{\mathrm e}^{4}\right ) {\mathrm e}^{2 x}+\left (\frac {9 \,{\mathrm e}^{8}}{4}-9 \,{\mathrm e}^{4}+9\right ) {\mathrm e}^{x}+{\mathrm e}^{8} {\mathrm e}^{3 x}+\left (-6 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}\right ) x^{3} {\mathrm e}^{x}+\left (-2 \,{\mathrm e}^{8}+4 \,{\mathrm e}^{4}\right ) x \,{\mathrm e}^{2 x}+\left (4+10 \,{\mathrm e}^{8}-22 \,{\mathrm e}^{4}\right ) x^{2} {\mathrm e}^{x}+\left (-3 \,{\mathrm e}^{8}+12 \,{\mathrm e}^{4}-12\right ) x \,{\mathrm e}^{x}+6 x^{2} {\mathrm e}^{8} {\mathrm e}^{2 x}+9 x^{4} {\mathrm e}^{8} {\mathrm e}^{x}\) | \(134\) |
meijerg | \(-\frac {3 \,{\mathrm e}^{8} \left (2-\frac {\left (12 x^{2}-12 x +6\right ) {\mathrm e}^{2 x}}{3}\right )}{2}+2 \,{\mathrm e}^{4} \left ({\mathrm e}^{4}+1\right ) \left (1-\frac {\left (-4 x +2\right ) {\mathrm e}^{2 x}}{2}\right )-\left (-8 \,{\mathrm e}^{8}+14 \,{\mathrm e}^{4}+4\right ) \left (2-\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}\right )-\left (-17 \,{\mathrm e}^{8}+32 \,{\mathrm e}^{4}+4\right ) \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )-9 \,{\mathrm e}^{8} \left (24-\frac {\left (5 x^{4}-20 x^{3}+60 x^{2}-120 x +120\right ) {\mathrm e}^{x}}{5}\right )-\left (-30 \,{\mathrm e}^{8}-12 \,{\mathrm e}^{4}\right ) \left (6-\frac {\left (-4 x^{3}+12 x^{2}-24 x +24\right ) {\mathrm e}^{x}}{4}\right )-{\mathrm e}^{8} \left (1-{\mathrm e}^{3 x}\right )-2 \,{\mathrm e}^{4} \left ({\mathrm e}^{4}-2\right ) \left (1-{\mathrm e}^{2 x}\right )-\left (-3-\frac {3 \,{\mathrm e}^{8}}{4}+3 \,{\mathrm e}^{4}\right ) \left (1-{\mathrm e}^{x}\right )\) | \(204\) |
default | \(-4 \,{\mathrm e}^{4} {\mathrm e}^{2 x}+2 \,{\mathrm e}^{8} {\mathrm e}^{2 x}+8 \,{\mathrm e}^{8} \left (\frac {x \,{\mathrm e}^{2 x}}{2}-\frac {{\mathrm e}^{2 x}}{4}\right )+8 \,{\mathrm e}^{4} \left (\frac {x \,{\mathrm e}^{2 x}}{2}-\frac {{\mathrm e}^{2 x}}{4}\right )+12 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{2 x} x^{2}}{2}-\frac {x \,{\mathrm e}^{2 x}}{2}+\frac {{\mathrm e}^{2 x}}{4}\right )+4 \,{\mathrm e}^{x} x^{2}-12 \,{\mathrm e}^{x} x +9 \,{\mathrm e}^{x}+3 \,{\mathrm e}^{4} {\mathrm e}^{x}-\frac {3 \,{\mathrm e}^{8} {\mathrm e}^{x}}{4}-32 \,{\mathrm e}^{4} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+17 \,{\mathrm e}^{8} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+12 \,{\mathrm e}^{4} \left ({\mathrm e}^{x} x^{3}-3 \,{\mathrm e}^{x} x^{2}+6 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}\right )+14 \,{\mathrm e}^{4} \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )-8 \,{\mathrm e}^{8} \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )+30 \,{\mathrm e}^{8} \left ({\mathrm e}^{x} x^{3}-3 \,{\mathrm e}^{x} x^{2}+6 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}\right )+9 \,{\mathrm e}^{8} \left ({\mathrm e}^{x} x^{4}-4 \,{\mathrm e}^{x} x^{3}+12 \,{\mathrm e}^{x} x^{2}-24 \,{\mathrm e}^{x} x +24 \,{\mathrm e}^{x}\right )+{\mathrm e}^{8} {\mathrm e}^{3 x}\) | \(288\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 227, normalized size = 7.57 \begin {gather*} {\left (6 \, x^{2} e^{8} - 2 \, x {\left (e^{8} - 2 \, e^{4}\right )} + 3 \, e^{8} - 6 \, e^{4}\right )} e^{\left (2 \, x\right )} + 9 \, {\left (x^{4} e^{8} - 4 \, x^{3} e^{8} + 12 \, x^{2} e^{8} - 24 \, x e^{8} + 24 \, e^{8}\right )} e^{x} + 30 \, {\left (x^{3} e^{8} - 3 \, x^{2} e^{8} + 6 \, x e^{8} - 6 \, e^{8}\right )} e^{x} + 12 \, {\left (x^{3} e^{4} - 3 \, x^{2} e^{4} + 6 \, x e^{4} - 6 \, e^{4}\right )} e^{x} - 8 \, {\left (x^{2} e^{8} - 2 \, x e^{8} + 2 \, e^{8}\right )} e^{x} + 14 \, {\left (x^{2} e^{4} - 2 \, x e^{4} + 2 \, e^{4}\right )} e^{x} + 4 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} + 17 \, {\left (x e^{8} - e^{8}\right )} e^{x} - 32 \, {\left (x e^{4} - e^{4}\right )} e^{x} - 4 \, {\left (x - 1\right )} e^{x} + e^{\left (3 \, x + 8\right )} - \frac {3}{4} \, e^{\left (x + 8\right )} + 3 \, e^{\left (x + 4\right )} - 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.71, size = 33, normalized size = 1.10 \begin {gather*} \frac {{\mathrm {e}}^x\,{\left (4\,x+2\,{\mathrm {e}}^{x+4}+3\,{\mathrm {e}}^4-2\,x\,{\mathrm {e}}^4+6\,x^2\,{\mathrm {e}}^4-6\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 128, normalized size = 4.27 \begin {gather*} \frac {\left (24 x^{2} e^{8} - 8 x e^{8} + 16 x e^{4} - 24 e^{4} + 12 e^{8}\right ) e^{2 x}}{4} + \frac {\left (36 x^{4} e^{8} - 24 x^{3} e^{8} + 48 x^{3} e^{4} - 88 x^{2} e^{4} + 16 x^{2} + 40 x^{2} e^{8} - 12 x e^{8} - 48 x + 48 x e^{4} - 36 e^{4} + 36 + 9 e^{8}\right ) e^{x}}{4} + e^{8} e^{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________