Optimal. Leaf size=29 \[ x \left (2+\frac {1}{4} x (5+x) \left (-1+e^{2 x^2}-x-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 60, normalized size of antiderivative = 2.07, number of steps used = 12, number of rules used = 5, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 2226, 2209, 2212, 2204} \begin {gather*} -\frac {x^5}{4}-\frac {3 x^4}{2}-\frac {3 x^3}{2}+\frac {5}{4} e^{2 x^2} x^2-\frac {5 x^2}{4}+\frac {1}{4} e^{2 x^2} x^3+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (8-10 x-18 x^2-24 x^3-5 x^4+e^{2 x^2} \left (10 x+3 x^2+20 x^3+4 x^4\right )\right ) \, dx\\ &=2 x-\frac {5 x^2}{4}-\frac {3 x^3}{2}-\frac {3 x^4}{2}-\frac {x^5}{4}+\frac {1}{4} \int e^{2 x^2} \left (10 x+3 x^2+20 x^3+4 x^4\right ) \, dx\\ &=2 x-\frac {5 x^2}{4}-\frac {3 x^3}{2}-\frac {3 x^4}{2}-\frac {x^5}{4}+\frac {1}{4} \int \left (10 e^{2 x^2} x+3 e^{2 x^2} x^2+20 e^{2 x^2} x^3+4 e^{2 x^2} x^4\right ) \, dx\\ &=2 x-\frac {5 x^2}{4}-\frac {3 x^3}{2}-\frac {3 x^4}{2}-\frac {x^5}{4}+\frac {3}{4} \int e^{2 x^2} x^2 \, dx+\frac {5}{2} \int e^{2 x^2} x \, dx+5 \int e^{2 x^2} x^3 \, dx+\int e^{2 x^2} x^4 \, dx\\ &=\frac {5 e^{2 x^2}}{8}+2 x+\frac {3}{16} e^{2 x^2} x-\frac {5 x^2}{4}+\frac {5}{4} e^{2 x^2} x^2-\frac {3 x^3}{2}+\frac {1}{4} e^{2 x^2} x^3-\frac {3 x^4}{2}-\frac {x^5}{4}-\frac {3}{16} \int e^{2 x^2} \, dx-\frac {3}{4} \int e^{2 x^2} x^2 \, dx-\frac {5}{2} \int e^{2 x^2} x \, dx\\ &=2 x-\frac {5 x^2}{4}+\frac {5}{4} e^{2 x^2} x^2-\frac {3 x^3}{2}+\frac {1}{4} e^{2 x^2} x^3-\frac {3 x^4}{2}-\frac {x^5}{4}-\frac {3}{32} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} x\right )+\frac {3}{16} \int e^{2 x^2} \, dx\\ &=2 x-\frac {5 x^2}{4}+\frac {5}{4} e^{2 x^2} x^2-\frac {3 x^3}{2}+\frac {1}{4} e^{2 x^2} x^3-\frac {3 x^4}{2}-\frac {x^5}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 51, normalized size = 1.76 \begin {gather*} \frac {1}{4} \left (8 x-5 x^2+5 e^{2 x^2} x^2-6 x^3+e^{2 x^2} x^3-6 x^4-x^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 41, normalized size = 1.41 \begin {gather*} -\frac {1}{4} \, x^{5} - \frac {3}{2} \, x^{4} - \frac {3}{2} \, x^{3} - \frac {5}{4} \, x^{2} + \frac {1}{4} \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 41, normalized size = 1.41 \begin {gather*} -\frac {1}{4} \, x^{5} - \frac {3}{2} \, x^{4} - \frac {3}{2} \, x^{3} - \frac {5}{4} \, x^{2} + \frac {1}{4} \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 42, normalized size = 1.45
method | result | size |
risch | \(\frac {\left (x^{3}+5 x^{2}\right ) {\mathrm e}^{2 x^{2}}}{4}-\frac {x^{5}}{4}-\frac {3 x^{4}}{2}-\frac {3 x^{3}}{2}-\frac {5 x^{2}}{4}+2 x\) | \(42\) |
default | \(2 x -\frac {5 x^{2}}{4}-\frac {3 x^{3}}{2}-\frac {3 x^{4}}{2}-\frac {x^{5}}{4}+\frac {5 x^{2} {\mathrm e}^{2 x^{2}}}{4}+\frac {x^{3} {\mathrm e}^{2 x^{2}}}{4}\) | \(47\) |
norman | \(2 x -\frac {5 x^{2}}{4}-\frac {3 x^{3}}{2}-\frac {3 x^{4}}{2}-\frac {x^{5}}{4}+\frac {5 x^{2} {\mathrm e}^{2 x^{2}}}{4}+\frac {x^{3} {\mathrm e}^{2 x^{2}}}{4}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 41, normalized size = 1.41 \begin {gather*} -\frac {1}{4} \, x^{5} - \frac {3}{2} \, x^{4} - \frac {3}{2} \, x^{3} - \frac {5}{4} \, x^{2} + \frac {1}{4} \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.74, size = 41, normalized size = 1.41 \begin {gather*} -\frac {x\,\left (5\,x-5\,x\,{\mathrm {e}}^{2\,x^2}-x^2\,{\mathrm {e}}^{2\,x^2}+6\,x^2+6\,x^3+x^4-8\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 44, normalized size = 1.52 \begin {gather*} - \frac {x^{5}}{4} - \frac {3 x^{4}}{2} - \frac {3 x^{3}}{2} - \frac {5 x^{2}}{4} + 2 x + \frac {\left (x^{3} + 5 x^{2}\right ) e^{2 x^{2}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________