Optimal. Leaf size=30 \[ \frac {625}{-2-e^{2-\frac {4 e^{-x}}{x}+x}-x+\log (5 x)} \]
________________________________________________________________________________________
Rubi [F] time = 20.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-625 x+625 x^2\right )+e^{\frac {e^{-x} \left (-4+e^x \left (2 x+x^2\right )\right )}{x}} \left (2500+2500 x+625 e^x x^2\right )}{e^{x+\frac {2 e^{-x} \left (-4+e^x \left (2 x+x^2\right )\right )}{x}} x^2+e^x \left (4 x^2+4 x^3+x^4\right )+e^x \left (-4 x^2-2 x^3\right ) \log (5 x)+e^x x^2 \log ^2(5 x)+e^{\frac {e^{-x} \left (-4+e^x \left (2 x+x^2\right )\right )}{x}} \left (e^x \left (4 x^2+2 x^3\right )-2 e^x x^2 \log (5 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {625 e^{\frac {4 e^{-x}}{x}} \left (e^{\frac {4 e^{-x}}{x}} (-1+x) x+e^{2+x} x^2+4 e^2 (1+x)\right )}{x^2 \left (e^{2+x}+e^{\frac {4 e^{-x}}{x}} (2+x)-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\\ &=625 \int \frac {e^{\frac {4 e^{-x}}{x}} \left (e^{\frac {4 e^{-x}}{x}} (-1+x) x+e^{2+x} x^2+4 e^2 (1+x)\right )}{x^2 \left (e^{2+x}+e^{\frac {4 e^{-x}}{x}} (2+x)-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\\ &=625 \int \left (\frac {e^{\frac {4 e^{-x}}{x}}}{2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)}-\frac {e^{\frac {4 e^{-x}}{x}} \left (-4 e^2-4 e^2 x+e^{\frac {4 e^{-x}}{x}} x+e^{\frac {4 e^{-x}}{x}} x^2+e^{\frac {4 e^{-x}}{x}} x^3-e^{\frac {4 e^{-x}}{x}} x^2 \log (5 x)\right )}{x^2 \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}\right ) \, dx\\ &=625 \int \frac {e^{\frac {4 e^{-x}}{x}}}{2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)} \, dx-625 \int \frac {e^{\frac {4 e^{-x}}{x}} \left (-4 e^2-4 e^2 x+e^{\frac {4 e^{-x}}{x}} x+e^{\frac {4 e^{-x}}{x}} x^2+e^{\frac {4 e^{-x}}{x}} x^3-e^{\frac {4 e^{-x}}{x}} x^2 \log (5 x)\right )}{x^2 \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\\ &=625 \int \frac {e^{\frac {4 e^{-x}}{x}}}{2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)} \, dx-625 \int \frac {-4 e^{2+\frac {4 e^{-x}}{x}} (1+x)+e^{\frac {8 e^{-x}}{x}} x \left (1+x+x^2\right )-e^{\frac {8 e^{-x}}{x}} x^2 \log (5 x)}{x^2 \left (e^{2+x}+e^{\frac {4 e^{-x}}{x}} (2+x)-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\\ &=625 \int \frac {e^{\frac {4 e^{-x}}{x}}}{2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)} \, dx-625 \int \left (\frac {e^{\frac {8 e^{-x}}{x}}}{\left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}-\frac {4 e^{2+\frac {4 e^{-x}}{x}}}{x^2 \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}-\frac {4 e^{2+\frac {4 e^{-x}}{x}}}{x \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}+\frac {e^{\frac {8 e^{-x}}{x}}}{x \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}+\frac {e^{\frac {8 e^{-x}}{x}} x}{\left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}-\frac {e^{\frac {8 e^{-x}}{x}} \log (5 x)}{\left (-2 e^{\frac {4 e^{-x}}{x}}-e^{2+x}-e^{\frac {4 e^{-x}}{x}} x+e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2}\right ) \, dx\\ &=-\left (625 \int \frac {e^{\frac {8 e^{-x}}{x}}}{\left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\right )-625 \int \frac {e^{\frac {8 e^{-x}}{x}}}{x \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx-625 \int \frac {e^{\frac {8 e^{-x}}{x}} x}{\left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx+625 \int \frac {e^{\frac {4 e^{-x}}{x}}}{2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)} \, dx+625 \int \frac {e^{\frac {8 e^{-x}}{x}} \log (5 x)}{\left (-2 e^{\frac {4 e^{-x}}{x}}-e^{2+x}-e^{\frac {4 e^{-x}}{x}} x+e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx+2500 \int \frac {e^{2+\frac {4 e^{-x}}{x}}}{x^2 \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx+2500 \int \frac {e^{2+\frac {4 e^{-x}}{x}}}{x \left (2 e^{\frac {4 e^{-x}}{x}}+e^{2+x}+e^{\frac {4 e^{-x}}{x}} x-e^{\frac {4 e^{-x}}{x}} \log (5 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 56, normalized size = 1.87 \begin {gather*} -\frac {625 e^{\frac {4 e^{-x}}{x}}}{e^{2+x}+e^{\frac {4 e^{-x}}{x}} (2+x)-e^{\frac {4 e^{-x}}{x}} \log (5 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 34, normalized size = 1.13 \begin {gather*} -\frac {625}{x + e^{\left (\frac {{\left ({\left (x^{2} + 2 \, x\right )} e^{x} - 4\right )} e^{\left (-x\right )}}{x}\right )} - \log \left (5 \, x\right ) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 36, normalized size = 1.20
method | result | size |
risch | \(-\frac {625}{x -\ln \left (5 x \right )+{\mathrm e}^{\frac {\left ({\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{x} x -4\right ) {\mathrm e}^{-x}}{x}}+2}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 41, normalized size = 1.37 \begin {gather*} -\frac {625 \, e^{\left (\frac {4 \, e^{\left (-x\right )}}{x}\right )}}{{\left (x - \log \relax (5) - \log \relax (x) + 2\right )} e^{\left (\frac {4 \, e^{\left (-x\right )}}{x}\right )} + e^{\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.95, size = 30, normalized size = 1.00 \begin {gather*} -\frac {625}{x-\ln \relax (5)-\ln \relax (x)+{\mathrm {e}}^2\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{-x}}{x}}\,{\mathrm {e}}^x+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 29, normalized size = 0.97 \begin {gather*} - \frac {625}{x + e^{\frac {\left (\left (x^{2} + 2 x\right ) e^{x} - 4\right ) e^{- x}}{x}} - \log {\left (5 x \right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________