Optimal. Leaf size=23 \[ \log ^2\left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-20+12 x+(4-2 x) \log \left (e^{8+x}\right )\right ) \log \left (\frac {1}{5} e^{-x} \left (-10 x^2+2 x^2 \log \left (e^{8+x}\right )\right )\right )}{-5 x+x \log \left (e^{8+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (20-12 x-(4-2 x) \log \left (e^{8+x}\right )\right ) \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{5 x-x \log \left (e^{8+x}\right )} \, dx\\ &=\int \left (\frac {12 \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{-5+\log \left (e^{8+x}\right )}-\frac {20 \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{x \left (-5+\log \left (e^{8+x}\right )\right )}-\frac {2 \log \left (e^{8+x}\right ) \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{-5+\log \left (e^{8+x}\right )}+\frac {4 \log \left (e^{8+x}\right ) \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{x \left (-5+\log \left (e^{8+x}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (e^{8+x}\right ) \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{-5+\log \left (e^{8+x}\right )} \, dx\right )+4 \int \frac {\log \left (e^{8+x}\right ) \log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{x \left (-5+\log \left (e^{8+x}\right )\right )} \, dx+12 \int \frac {\log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{-5+\log \left (e^{8+x}\right )} \, dx-20 \int \frac {\log \left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right )}{x \left (-5+\log \left (e^{8+x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 23, normalized size = 1.00 \begin {gather*} \log ^2\left (\frac {2}{5} e^{-x} x^2 \left (-5+\log \left (e^{8+x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.59, size = 18, normalized size = 0.78 \begin {gather*} \log \left (\frac {2}{5} \, {\left (x^{3} + 3 \, x^{2}\right )} e^{\left (-x\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left ({\left (x - 2\right )} \log \left (e^{\left (x + 8\right )}\right ) - 6 \, x + 10\right )} \log \left (\frac {2}{5} \, {\left (x^{2} \log \left (e^{\left (x + 8\right )}\right ) - 5 \, x^{2}\right )} e^{\left (-x\right )}\right )}{x \log \left (e^{\left (x + 8\right )}\right ) - 5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 307, normalized size = 13.35
method | result | size |
default | \(4 \ln \left (\frac {\left (2 x^{2} \ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-10 x^{2}\right ) {\mathrm e}^{-x}}{5}\right ) \ln \relax (x )+2 \ln \left (\frac {\left (2 x^{2} \ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-10 x^{2}\right ) {\mathrm e}^{-x}}{5}\right ) \ln \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right )-2 \ln \left (\frac {\left (2 x^{2} \ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-10 x^{2}\right ) {\mathrm e}^{-x}}{5}\right ) x -x^{2}-2 \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5-x \right ) \ln \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right )+4 x \ln \relax (x )-4 \ln \relax (x )^{2}-4 \dilog \left (\frac {\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5}{\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5-x}\right )-4 \ln \relax (x ) \ln \left (\frac {\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5}{\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5-x}\right )+2 \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right ) \ln \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right )-2 \ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )+10+2 x -\ln \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right )^{2}-4 \dilog \left (-\frac {x}{\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5-x}\right )-4 \ln \left (\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5\right ) \ln \left (-\frac {x}{\ln \left ({\mathrm e}^{3} {\mathrm e}^{5+x}\right )-5-x}\right )\) | \(307\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 78, normalized size = 3.39 \begin {gather*} -x^{2} - 2 \, {\left (x - \log \left (x + 3\right ) - 2 \, \log \relax (x)\right )} \log \left (\frac {2}{5} \, {\left ({\left (x + 8\right )} x^{2} - 5 \, x^{2}\right )} e^{\left (-x\right )}\right ) + 2 \, {\left (x - 2 \, \log \relax (x) + 3\right )} \log \left (x + 3\right ) - \log \left (x + 3\right )^{2} + 4 \, x \log \relax (x) - 4 \, \log \relax (x)^{2} - 6 \, \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.19, size = 21, normalized size = 0.91 \begin {gather*} {\left (x-\ln \left (\frac {2\,x^2\,\left (x+8\right )}{5}-2\,x^2\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________