Optimal. Leaf size=18 \[ -8+x-x^2 \left (-x+\log ^2(x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 11, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {2304, 2305} \begin {gather*} -x^4+2 x^3 \log ^2(x)-x^2 \log ^4(x)+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-x^4-2 \int x \log ^4(x) \, dx+4 \int x^2 \log (x) \, dx-4 \int x \log ^3(x) \, dx+6 \int x^2 \log ^2(x) \, dx\\ &=x-\frac {4 x^3}{9}-x^4+\frac {4}{3} x^3 \log (x)+2 x^3 \log ^2(x)-2 x^2 \log ^3(x)-x^2 \log ^4(x)-4 \int x^2 \log (x) \, dx+4 \int x \log ^3(x) \, dx+6 \int x \log ^2(x) \, dx\\ &=x-x^4+3 x^2 \log ^2(x)+2 x^3 \log ^2(x)-x^2 \log ^4(x)-6 \int x \log (x) \, dx-6 \int x \log ^2(x) \, dx\\ &=x+\frac {3 x^2}{2}-x^4-3 x^2 \log (x)+2 x^3 \log ^2(x)-x^2 \log ^4(x)+6 \int x \log (x) \, dx\\ &=x-x^4+2 x^3 \log ^2(x)-x^2 \log ^4(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.39 \begin {gather*} x-x^4+2 x^3 \log ^2(x)-x^2 \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.64, size = 25, normalized size = 1.39 \begin {gather*} -x^{2} \log \relax (x)^{4} + 2 \, x^{3} \log \relax (x)^{2} - x^{4} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 25, normalized size = 1.39 \begin {gather*} -x^{2} \log \relax (x)^{4} + 2 \, x^{3} \log \relax (x)^{2} - x^{4} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 1.44
method | result | size |
default | \(-x^{4}+x -x^{2} \ln \relax (x )^{4}+2 x^{3} \ln \relax (x )^{2}\) | \(26\) |
norman | \(-x^{4}+x -x^{2} \ln \relax (x )^{4}+2 x^{3} \ln \relax (x )^{2}\) | \(26\) |
risch | \(-x^{4}+x -x^{2} \ln \relax (x )^{4}+2 x^{3} \ln \relax (x )^{2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 88, normalized size = 4.89 \begin {gather*} \frac {2}{9} \, {\left (9 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 2\right )} x^{3} - x^{4} + \frac {4}{3} \, x^{3} \log \relax (x) - \frac {1}{2} \, {\left (2 \, \log \relax (x)^{4} - 4 \, \log \relax (x)^{3} + 6 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 3\right )} x^{2} - \frac {1}{2} \, {\left (4 \, \log \relax (x)^{3} - 6 \, \log \relax (x)^{2} + 6 \, \log \relax (x) - 3\right )} x^{2} - \frac {4}{9} \, x^{3} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.06, size = 25, normalized size = 1.39 \begin {gather*} -x^4+2\,x^3\,{\ln \relax (x)}^2-x^2\,{\ln \relax (x)}^4+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 1.22 \begin {gather*} - x^{4} + 2 x^{3} \log {\relax (x )}^{2} - x^{2} \log {\relax (x )}^{4} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________