Optimal. Leaf size=23 \[ e^{9 e^{\frac {2 x (4+x)}{3 (-2+x-\log (x))}}} \]
________________________________________________________________________________________
Rubi [F] time = 15.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) \left (-24-18 x+6 x^2+(-24-12 x) \log (x)\right )}{4-4 x+x^2+(4-2 x) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) \left (-4-3 x+x^2-4 \log (x)-2 x \log (x)\right )}{(2-x+\log (x))^2} \, dx\\ &=6 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) \left (-4-3 x+x^2-4 \log (x)-2 x \log (x)\right )}{(2-x+\log (x))^2} \, dx\\ &=6 \int \left (\frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) \left (4-3 x-x^2\right )}{(-2+x-\log (x))^2}+\frac {2 \exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) (2+x)}{-2+x-\log (x)}\right ) \, dx\\ &=6 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) \left (4-3 x-x^2\right )}{(-2+x-\log (x))^2} \, dx+12 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) (2+x)}{-2+x-\log (x)} \, dx\\ &=6 \int \left (\frac {4 \exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right )}{(-2+x-\log (x))^2}-\frac {3 \exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x}{(-2+x-\log (x))^2}-\frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x^2}{(-2+x-\log (x))^2}\right ) \, dx+12 \int \left (\frac {2 \exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right )}{-2+x-\log (x)}+\frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x}{-2+x-\log (x)}\right ) \, dx\\ &=-\left (6 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x^2}{(-2+x-\log (x))^2} \, dx\right )+12 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x}{-2+x-\log (x)} \, dx-18 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right ) x}{(-2+x-\log (x))^2} \, dx+24 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right )}{(-2+x-\log (x))^2} \, dx+24 \int \frac {\exp \left (9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}\right )}{-2+x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.98, size = 23, normalized size = 1.00 \begin {gather*} e^{9 e^{-\frac {2 x (4+x)}{3 (2-x+\log (x))}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.16, size = 68, normalized size = 2.96 \begin {gather*} e^{\left (\frac {2 \, x^{2} + 27 \, {\left (x - \log \relax (x) - 2\right )} e^{\left (\frac {2 \, {\left (x^{2} + 4 \, x\right )}}{3 \, {\left (x - \log \relax (x) - 2\right )}}\right )} + 8 \, x}{3 \, {\left (x - \log \relax (x) - 2\right )}} - \frac {2 \, {\left (x^{2} + 4 \, x\right )}}{3 \, {\left (x - \log \relax (x) - 2\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, {\left (x^{2} - 2 \, {\left (x + 2\right )} \log \relax (x) - 3 \, x - 4\right )} e^{\left (\frac {2 \, {\left (x^{2} + 4 \, x\right )}}{3 \, {\left (x - \log \relax (x) - 2\right )}} + 9 \, e^{\left (\frac {2 \, {\left (x^{2} + 4 \, x\right )}}{3 \, {\left (x - \log \relax (x) - 2\right )}}\right )}\right )}}{x^{2} - 2 \, {\left (x - 2\right )} \log \relax (x) + \log \relax (x)^{2} - 4 \, x + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.87
method | result | size |
risch | \({\mathrm e}^{9 \,{\mathrm e}^{-\frac {2 \left (4+x \right ) x}{3 \left (2+\ln \relax (x )-x \right )}}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 51, normalized size = 2.22 \begin {gather*} e^{\left (9 \, x^{\frac {2}{3}} e^{\left (\frac {2}{3} \, x + \frac {2 \, \log \relax (x)^{2}}{3 \, {\left (x - \log \relax (x) - 2\right )}} + \frac {16 \, \log \relax (x)}{3 \, {\left (x - \log \relax (x) - 2\right )}} + \frac {8}{x - \log \relax (x) - 2} + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.59, size = 26, normalized size = 1.13 \begin {gather*} {\mathrm {e}}^{9\,{\mathrm {e}}^{-\frac {2\,x^2+8\,x}{3\,\ln \relax (x)-3\,x+6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.51, size = 24, normalized size = 1.04 \begin {gather*} e^{9 e^{\frac {2 \left (- x^{2} - 4 x\right )}{- 3 x + 3 \log {\relax (x )} + 6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________