Optimal. Leaf size=18 \[ 8 e^{x+\frac {1}{e^x-4 \log (6 x)}} \]
________________________________________________________________________________________
Rubi [F] time = 25.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \left (16-4 e^x x+4 e^{2 x} x-32 e^x x \log (6 x)+64 x \log ^2(6 x)\right )}{e^{2 x} x-8 e^x x \log (6 x)+16 x \log ^2(6 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \left (4-e^x x+e^{2 x} x-8 e^x x \log (6 x)+16 x \log ^2(6 x)\right )}{x \left (e^x-4 \log (6 x)\right )^2} \, dx\\ &=4 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \left (4-e^x x+e^{2 x} x-8 e^x x \log (6 x)+16 x \log ^2(6 x)\right )}{x \left (e^x-4 \log (6 x)\right )^2} \, dx\\ &=4 \int \left (\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )-\frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{e^x-4 \log (6 x)}-\frac {4 \exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) (-1+x \log (6 x))}{x \left (e^x-4 \log (6 x)\right )^2}\right ) \, dx\\ &=4 \int \exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \, dx-4 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{e^x-4 \log (6 x)} \, dx-16 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) (-1+x \log (6 x))}{x \left (e^x-4 \log (6 x)\right )^2} \, dx\\ &=4 \int \exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \, dx-4 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{e^x-4 \log (6 x)} \, dx-16 \int \left (-\frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{x \left (e^x-4 \log (6 x)\right )^2}+\frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \log (6 x)}{\left (e^x-4 \log (6 x)\right )^2}\right ) \, dx\\ &=4 \int \exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \, dx-4 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{e^x-4 \log (6 x)} \, dx+16 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right )}{x \left (e^x-4 \log (6 x)\right )^2} \, dx-16 \int \frac {\exp \left (\frac {-1+e^x (-x-\log (2))+(4 x+4 \log (2)) \log (6 x)}{-e^x+4 \log (6 x)}\right ) \log (6 x)}{\left (e^x-4 \log (6 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 18, normalized size = 1.00 \begin {gather*} 8 e^{x+\frac {1}{e^x-4 \log (6 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 34, normalized size = 1.89 \begin {gather*} 4 \, e^{\left (\frac {{\left (x + \log \relax (2)\right )} e^{x} - 4 \, {\left (x + \log \relax (2)\right )} \log \left (6 \, x\right ) + 1}{e^{x} - 4 \, \log \left (6 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.28, size = 56, normalized size = 3.11 \begin {gather*} 4 \, e^{\left (\frac {x e^{x} - 4 \, x \log \relax (2) + e^{x} \log \relax (2) - 4 \, \log \relax (2)^{2} - 4 \, x \log \left (3 \, x\right ) - 4 \, \log \relax (2) \log \left (3 \, x\right ) + 1}{e^{x} - 4 \, \log \relax (2) - 4 \, \log \left (3 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 42, normalized size = 2.33
method | result | size |
risch | \(4 \,{\mathrm e}^{\frac {{\mathrm e}^{x} \ln \relax (2)+{\mathrm e}^{x} x -4 \ln \left (6 x \right ) \ln \relax (2)-4 x \ln \left (6 x \right )+1}{{\mathrm e}^{x}-4 \ln \left (6 x \right )}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.99, size = 199, normalized size = 11.06 \begin {gather*} 4 \, e^{\left (\frac {x e^{x}}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, x \log \relax (3)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, x \log \relax (2)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} + \frac {e^{x} \log \relax (2)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, \log \relax (3) \log \relax (2)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, \log \relax (2)^{2}}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, x \log \relax (x)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} - \frac {4 \, \log \relax (2) \log \relax (x)}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)} + \frac {1}{e^{x} - 4 \, \log \relax (3) - 4 \, \log \relax (2) - 4 \, \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^x\,\left (x+\ln \relax (2)\right )-\ln \left (6\,x\right )\,\left (4\,x+4\,\ln \relax (2)\right )+1}{4\,\ln \left (6\,x\right )-{\mathrm {e}}^x}}\,\left (64\,x\,{\ln \left (6\,x\right )}^2-32\,x\,{\mathrm {e}}^x\,\ln \left (6\,x\right )+4\,x\,{\mathrm {e}}^{2\,x}-4\,x\,{\mathrm {e}}^x+16\right )}{16\,x\,{\ln \left (6\,x\right )}^2-8\,x\,{\mathrm {e}}^x\,\ln \left (6\,x\right )+x\,{\mathrm {e}}^{2\,x}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.97, size = 37, normalized size = 2.06 \begin {gather*} 4 e^{\frac {\left (- x - \log {\relax (2 )}\right ) e^{x} + \left (4 x + 4 \log {\relax (2 )}\right ) \log {\left (6 x \right )} - 1}{- e^{x} + 4 \log {\left (6 x \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________