3.843 \(\int e^{-\tanh ^{-1}(a+b x)} x^3 \, dx\)

Optimal. Leaf size=156 \[ -\frac{(-a-b x+1)^{3/2} \sqrt{a+b x+1} \left (18 a^2-2 (6 a+1) b x+10 a+7\right )}{24 b^4}-\frac{\left (8 a^3+12 a^2+12 a+3\right ) \sqrt{-a-b x+1} \sqrt{a+b x+1}}{8 b^4}-\frac{\left (8 a^3+12 a^2+12 a+3\right ) \sin ^{-1}(a+b x)}{8 b^4}-\frac{x^2 (-a-b x+1)^{3/2} \sqrt{a+b x+1}}{4 b^2} \]

[Out]

-((3 + 12*a + 12*a^2 + 8*a^3)*Sqrt[1 - a - b*x]*Sqrt[1 + a + b*x])/(8*b^4) - (x^2*(1 - a - b*x)^(3/2)*Sqrt[1 +
 a + b*x])/(4*b^2) - ((1 - a - b*x)^(3/2)*Sqrt[1 + a + b*x]*(7 + 10*a + 18*a^2 - 2*(1 + 6*a)*b*x))/(24*b^4) -
((3 + 12*a + 12*a^2 + 8*a^3)*ArcSin[a + b*x])/(8*b^4)

________________________________________________________________________________________

Rubi [A]  time = 0.166045, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6163, 100, 147, 50, 53, 619, 216} \[ -\frac{(-a-b x+1)^{3/2} \sqrt{a+b x+1} \left (18 a^2-2 (6 a+1) b x+10 a+7\right )}{24 b^4}-\frac{\left (8 a^3+12 a^2+12 a+3\right ) \sqrt{-a-b x+1} \sqrt{a+b x+1}}{8 b^4}-\frac{\left (8 a^3+12 a^2+12 a+3\right ) \sin ^{-1}(a+b x)}{8 b^4}-\frac{x^2 (-a-b x+1)^{3/2} \sqrt{a+b x+1}}{4 b^2} \]

Antiderivative was successfully verified.

[In]

Int[x^3/E^ArcTanh[a + b*x],x]

[Out]

-((3 + 12*a + 12*a^2 + 8*a^3)*Sqrt[1 - a - b*x]*Sqrt[1 + a + b*x])/(8*b^4) - (x^2*(1 - a - b*x)^(3/2)*Sqrt[1 +
 a + b*x])/(4*b^2) - ((1 - a - b*x)^(3/2)*Sqrt[1 + a + b*x]*(7 + 10*a + 18*a^2 - 2*(1 + 6*a)*b*x))/(24*b^4) -
((3 + 12*a + 12*a^2 + 8*a^3)*ArcSin[a + b*x])/(8*b^4)

Rule 6163

Int[E^(ArcTanh[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[((d + e*x)^m*(1
+ a*c + b*c*x)^(n/2))/(1 - a*c - b*c*x)^(n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 53

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int e^{-\tanh ^{-1}(a+b x)} x^3 \, dx &=\int \frac{x^3 \sqrt{1-a-b x}}{\sqrt{1+a+b x}} \, dx\\ &=-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{\int \frac{x \sqrt{1-a-b x} \left (-2 \left (1-a^2\right )+(1+6 a) b x\right )}{\sqrt{1+a+b x}} \, dx}{4 b^2}\\ &=-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{(1-a-b x)^{3/2} \sqrt{1+a+b x} \left (7+10 a+18 a^2-2 (1+6 a) b x\right )}{24 b^4}-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \int \frac{\sqrt{1-a-b x}}{\sqrt{1+a+b x}} \, dx}{8 b^3}\\ &=-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \sqrt{1-a-b x} \sqrt{1+a+b x}}{8 b^4}-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{(1-a-b x)^{3/2} \sqrt{1+a+b x} \left (7+10 a+18 a^2-2 (1+6 a) b x\right )}{24 b^4}-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \int \frac{1}{\sqrt{1-a-b x} \sqrt{1+a+b x}} \, dx}{8 b^3}\\ &=-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \sqrt{1-a-b x} \sqrt{1+a+b x}}{8 b^4}-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{(1-a-b x)^{3/2} \sqrt{1+a+b x} \left (7+10 a+18 a^2-2 (1+6 a) b x\right )}{24 b^4}-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \int \frac{1}{\sqrt{(1-a) (1+a)-2 a b x-b^2 x^2}} \, dx}{8 b^3}\\ &=-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \sqrt{1-a-b x} \sqrt{1+a+b x}}{8 b^4}-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{(1-a-b x)^{3/2} \sqrt{1+a+b x} \left (7+10 a+18 a^2-2 (1+6 a) b x\right )}{24 b^4}+\frac{\left (3+12 a+12 a^2+8 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{4 b^2}}} \, dx,x,-2 a b-2 b^2 x\right )}{16 b^5}\\ &=-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \sqrt{1-a-b x} \sqrt{1+a+b x}}{8 b^4}-\frac{x^2 (1-a-b x)^{3/2} \sqrt{1+a+b x}}{4 b^2}-\frac{(1-a-b x)^{3/2} \sqrt{1+a+b x} \left (7+10 a+18 a^2-2 (1+6 a) b x\right )}{24 b^4}-\frac{\left (3+12 a+12 a^2+8 a^3\right ) \sin ^{-1}(a+b x)}{8 b^4}\\ \end{align*}

Mathematica [A]  time = 0.438158, size = 160, normalized size = 1.03 \[ \frac{\frac{\sqrt{a+b x+1} \left (5 a^2 (6 b x-1)+6 a^4+38 a^3+a \left (-18 b^2 x^2+50 b x-23\right )-6 b^4 x^4+14 b^3 x^3-17 b^2 x^2+25 b x-16\right )}{\sqrt{-a-b x+1}}+\frac{6 \left (8 a^3+12 a^2+12 a+3\right ) \sqrt{b} \sinh ^{-1}\left (\frac{\sqrt{-b} \sqrt{-a-b x+1}}{\sqrt{2} \sqrt{b}}\right )}{\sqrt{-b}}}{24 b^4} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/E^ArcTanh[a + b*x],x]

[Out]

((Sqrt[1 + a + b*x]*(-16 + 38*a^3 + 6*a^4 + 25*b*x - 17*b^2*x^2 + 14*b^3*x^3 - 6*b^4*x^4 + 5*a^2*(-1 + 6*b*x)
+ a*(-23 + 50*b*x - 18*b^2*x^2)))/Sqrt[1 - a - b*x] + (6*(3 + 12*a + 12*a^2 + 8*a^3)*Sqrt[b]*ArcSinh[(Sqrt[-b]
*Sqrt[1 - a - b*x])/(Sqrt[2]*Sqrt[b])])/Sqrt[-b])/(24*b^4)

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 809, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x+a+1)*(1-(b*x+a)^2)^(1/2),x)

[Out]

3/2*a/b^3*x*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3/2*a/b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+a/b)/(-b^2*x^2-2*a*b*x-
a^2+1)^(1/2))-1/b^4*(-(x+(1+a)/b)^2*b^2+2*b*(x+(1+a)/b))^(1/2)*a^3-3/b^4*(-(x+(1+a)/b)^2*b^2+2*b*(x+(1+a)/b))^
(1/2)*a^2-3/b^4*(-(x+(1+a)/b)^2*b^2+2*b*(x+(1+a)/b))^(1/2)*a-1/b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+(1+a)/b-1
/b)/(-(x+(1+a)/b)^2*b^2+2*b*(x+(1+a)/b))^(1/2))+1/3/b^4*(-b^2*x^2-2*a*b*x-a^2+1)^(3/2)-1/4/b^3*x*(-b^2*x^2-2*a
*b*x-a^2+1)^(3/2)+3/4/b^4*a*(-b^2*x^2-2*a*b*x-a^2+1)^(3/2)-1/b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+(1+a)/b-1/b
)/(-(x+(1+a)/b)^2*b^2+2*b*(x+(1+a)/b))^(1/2))*a^3-3/b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+(1+a)/b-1/b)/(-(x+(1
+a)/b)^2*b^2+2*b*(x+(1+a)/b))^(1/2))*a^2-3/b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+(1+a)/b-1/b)/(-(x+(1+a)/b)^2*
b^2+2*b*(x+(1+a)/b))^(1/2))*a+3/2*a^2/b^3*x*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3/2*a^2/b^3/(b^2)^(1/2)*arctan((b^2
)^(1/2)*(x+a/b)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))+3/2*a^2/b^4*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3/2*a^3/b^4*(-b^2*x
^2-2*a*b*x-a^2+1)^(1/2)+5/8*a/b^4*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+5/8/b^3*x*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+5/8/
b^3/(b^2)^(1/2)*arctan((b^2)^(1/2)*(x+a/b)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))-1/b^4*(-(x+(1+a)/b)^2*b^2+2*b*(x+(1
+a)/b))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.47801, size = 456, normalized size = 2.92 \begin{align*} \frac{3 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a^{2} x}{2 \, b^{3}} - \frac{a^{3} \arcsin \left (b x + a\right )}{b^{4}} + \frac{\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a^{3}}{2 \, b^{4}} - \frac{{\left (-b^{2} x^{2} - 2 \, a b x - a^{2} + 1\right )}^{\frac{3}{2}} x}{4 \, b^{3}} + \frac{3 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a x}{2 \, b^{3}} - \frac{3 \, a^{2} \arcsin \left (b x + a\right )}{2 \, b^{4}} + \frac{3 \,{\left (-b^{2} x^{2} - 2 \, a b x - a^{2} + 1\right )}^{\frac{3}{2}} a}{4 \, b^{4}} - \frac{3 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a^{2}}{2 \, b^{4}} + \frac{5 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} x}{8 \, b^{3}} - \frac{3 \, a \arcsin \left (b x + a\right )}{2 \, b^{4}} + \frac{{\left (-b^{2} x^{2} - 2 \, a b x - a^{2} + 1\right )}^{\frac{3}{2}}}{3 \, b^{4}} - \frac{19 \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a}{8 \, b^{4}} - \frac{3 \, \arcsin \left (b x + a\right )}{8 \, b^{4}} - \frac{\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a+1)*(1-(b*x+a)^2)^(1/2),x, algorithm="maxima")

[Out]

3/2*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a^2*x/b^3 - a^3*arcsin(b*x + a)/b^4 + 1/2*sqrt(-b^2*x^2 - 2*a*b*x - a^2
 + 1)*a^3/b^4 - 1/4*(-b^2*x^2 - 2*a*b*x - a^2 + 1)^(3/2)*x/b^3 + 3/2*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a*x/b^
3 - 3/2*a^2*arcsin(b*x + a)/b^4 + 3/4*(-b^2*x^2 - 2*a*b*x - a^2 + 1)^(3/2)*a/b^4 - 3/2*sqrt(-b^2*x^2 - 2*a*b*x
 - a^2 + 1)*a^2/b^4 + 5/8*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*x/b^3 - 3/2*a*arcsin(b*x + a)/b^4 + 1/3*(-b^2*x^2
 - 2*a*b*x - a^2 + 1)^(3/2)/b^4 - 19/8*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a/b^4 - 3/8*arcsin(b*x + a)/b^4 - sq
rt(-b^2*x^2 - 2*a*b*x - a^2 + 1)/b^4

________________________________________________________________________________________

Fricas [A]  time = 2.03707, size = 338, normalized size = 2.17 \begin{align*} \frac{3 \,{\left (8 \, a^{3} + 12 \, a^{2} + 12 \, a + 3\right )} \arctan \left (\frac{\sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}{\left (b x + a\right )}}{b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right ) +{\left (6 \, b^{3} x^{3} - 2 \,{\left (3 \, a + 4\right )} b^{2} x^{2} - 6 \, a^{3} +{\left (6 \, a^{2} + 20 \, a + 9\right )} b x - 44 \, a^{2} - 39 \, a - 16\right )} \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{24 \, b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a+1)*(1-(b*x+a)^2)^(1/2),x, algorithm="fricas")

[Out]

1/24*(3*(8*a^3 + 12*a^2 + 12*a + 3)*arctan(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(b*x + a)/(b^2*x^2 + 2*a*b*x + a
^2 - 1)) + (6*b^3*x^3 - 2*(3*a + 4)*b^2*x^2 - 6*a^3 + (6*a^2 + 20*a + 9)*b*x - 44*a^2 - 39*a - 16)*sqrt(-b^2*x
^2 - 2*a*b*x - a^2 + 1))/b^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \sqrt{- \left (a + b x - 1\right ) \left (a + b x + 1\right )}}{a + b x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x+a+1)*(1-(b*x+a)**2)**(1/2),x)

[Out]

Integral(x**3*sqrt(-(a + b*x - 1)*(a + b*x + 1))/(a + b*x + 1), x)

________________________________________________________________________________________

Giac [A]  time = 1.22074, size = 200, normalized size = 1.28 \begin{align*} \frac{1}{24} \, \sqrt{-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}{\left ({\left (2 \, x{\left (\frac{3 \, x}{b} - \frac{3 \, a b^{5} + 4 \, b^{5}}{b^{7}}\right )} + \frac{6 \, a^{2} b^{4} + 20 \, a b^{4} + 9 \, b^{4}}{b^{7}}\right )} x - \frac{6 \, a^{3} b^{3} + 44 \, a^{2} b^{3} + 39 \, a b^{3} + 16 \, b^{3}}{b^{7}}\right )} + \frac{{\left (8 \, a^{3} + 12 \, a^{2} + 12 \, a + 3\right )} \arcsin \left (-b x - a\right ) \mathrm{sgn}\left (b\right )}{8 \, b^{3}{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a+1)*(1-(b*x+a)^2)^(1/2),x, algorithm="giac")

[Out]

1/24*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*((2*x*(3*x/b - (3*a*b^5 + 4*b^5)/b^7) + (6*a^2*b^4 + 20*a*b^4 + 9*b^4)
/b^7)*x - (6*a^3*b^3 + 44*a^2*b^3 + 39*a*b^3 + 16*b^3)/b^7) + 1/8*(8*a^3 + 12*a^2 + 12*a + 3)*arcsin(-b*x - a)
*sgn(b)/(b^3*abs(b))