3.327 \(\int \frac{e^{\tanh ^{-1}(a x)} x^4}{c-a c x} \, dx\)

Optimal. Leaf size=146 \[ \frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{11 x \sqrt{1-a^2 x^2}}{8 a^4 c}+\frac{13 \sqrt{1-a^2 x^2}}{3 a^5 c}+\frac{(a x+1)^2}{a^5 c \sqrt{1-a^2 x^2}}-\frac{27 \sin ^{-1}(a x)}{8 a^5 c} \]

[Out]

(1 + a*x)^2/(a^5*c*Sqrt[1 - a^2*x^2]) + (13*Sqrt[1 - a^2*x^2])/(3*a^5*c) + (11*x*Sqrt[1 - a^2*x^2])/(8*a^4*c)
+ (2*x^2*Sqrt[1 - a^2*x^2])/(3*a^3*c) + (x^3*Sqrt[1 - a^2*x^2])/(4*a^2*c) - (27*ArcSin[a*x])/(8*a^5*c)

________________________________________________________________________________________

Rubi [A]  time = 0.343283, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {6128, 852, 1635, 1815, 641, 216} \[ \frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{11 x \sqrt{1-a^2 x^2}}{8 a^4 c}+\frac{13 \sqrt{1-a^2 x^2}}{3 a^5 c}+\frac{(a x+1)^2}{a^5 c \sqrt{1-a^2 x^2}}-\frac{27 \sin ^{-1}(a x)}{8 a^5 c} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*x^4)/(c - a*c*x),x]

[Out]

(1 + a*x)^2/(a^5*c*Sqrt[1 - a^2*x^2]) + (13*Sqrt[1 - a^2*x^2])/(3*a^5*c) + (11*x*Sqrt[1 - a^2*x^2])/(8*a^4*c)
+ (2*x^2*Sqrt[1 - a^2*x^2])/(3*a^3*c) + (x^3*Sqrt[1 - a^2*x^2])/(4*a^2*c) - (27*ArcSin[a*x])/(8*a^5*c)

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rule 1815

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Si
mp[(e*x^(q - 1)*(a + b*x^2)^(p + 1))/(b*(q + 2*p + 1)), x] + Dist[1/(b*(q + 2*p + 1)), Int[(a + b*x^2)^p*Expan
dToSum[b*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x] &&  !LeQ[p, -1]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)} x^4}{c-a c x} \, dx &=c \int \frac{x^4 \sqrt{1-a^2 x^2}}{(c-a c x)^2} \, dx\\ &=\frac{\int \frac{x^4 (c+a c x)^2}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c^3}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}-\frac{\int \frac{(c+a c x) \left (\frac{2}{a^4}+\frac{x}{a^3}+\frac{x^2}{a^2}+\frac{x^3}{a}\right )}{\sqrt{1-a^2 x^2}} \, dx}{c^2}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}+\frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}+\frac{\int \frac{-\frac{8 c}{a^2}-\frac{12 c x}{a}-11 c x^2-8 a c x^3}{\sqrt{1-a^2 x^2}} \, dx}{4 a^2 c^2}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}-\frac{\int \frac{24 c+52 a c x+33 a^2 c x^2}{\sqrt{1-a^2 x^2}} \, dx}{12 a^4 c^2}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}+\frac{11 x \sqrt{1-a^2 x^2}}{8 a^4 c}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}+\frac{\int \frac{-81 a^2 c-104 a^3 c x}{\sqrt{1-a^2 x^2}} \, dx}{24 a^6 c^2}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}+\frac{13 \sqrt{1-a^2 x^2}}{3 a^5 c}+\frac{11 x \sqrt{1-a^2 x^2}}{8 a^4 c}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}-\frac{27 \int \frac{1}{\sqrt{1-a^2 x^2}} \, dx}{8 a^4 c}\\ &=\frac{(1+a x)^2}{a^5 c \sqrt{1-a^2 x^2}}+\frac{13 \sqrt{1-a^2 x^2}}{3 a^5 c}+\frac{11 x \sqrt{1-a^2 x^2}}{8 a^4 c}+\frac{2 x^2 \sqrt{1-a^2 x^2}}{3 a^3 c}+\frac{x^3 \sqrt{1-a^2 x^2}}{4 a^2 c}-\frac{27 \sin ^{-1}(a x)}{8 a^5 c}\\ \end{align*}

Mathematica [A]  time = 0.0647541, size = 81, normalized size = 0.55 \[ \frac{162 \sin ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{2}}\right )-\frac{\sqrt{a x+1} \left (6 a^4 x^4+10 a^3 x^3+17 a^2 x^2+47 a x-128\right )}{\sqrt{1-a x}}}{24 a^5 c} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^ArcTanh[a*x]*x^4)/(c - a*c*x),x]

[Out]

(-((Sqrt[1 + a*x]*(-128 + 47*a*x + 17*a^2*x^2 + 10*a^3*x^3 + 6*a^4*x^4))/Sqrt[1 - a*x]) + 162*ArcSin[Sqrt[1 -
a*x]/Sqrt[2]])/(24*a^5*c)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 166, normalized size = 1.1 \begin{align*}{\frac{{x}^{3}}{4\,{a}^{2}c}\sqrt{-{a}^{2}{x}^{2}+1}}+{\frac{11\,x}{8\,{a}^{4}c}\sqrt{-{a}^{2}{x}^{2}+1}}-{\frac{27}{8\,{a}^{4}c}\arctan \left ({x\sqrt{{a}^{2}}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ){\frac{1}{\sqrt{{a}^{2}}}}}+{\frac{2\,{x}^{2}}{3\,{a}^{3}c}\sqrt{-{a}^{2}{x}^{2}+1}}+{\frac{10}{3\,{a}^{5}c}\sqrt{-{a}^{2}{x}^{2}+1}}-2\,{\frac{1}{c{a}^{6}}\sqrt{-{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,a \left ( x-{a}^{-1} \right ) } \left ( x-{a}^{-1} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c),x)

[Out]

1/4*x^3*(-a^2*x^2+1)^(1/2)/a^2/c+11/8*x*(-a^2*x^2+1)^(1/2)/a^4/c-27/8/c/a^4/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(
-a^2*x^2+1)^(1/2))+2/3*x^2*(-a^2*x^2+1)^(1/2)/a^3/c+10/3*(-a^2*x^2+1)^(1/2)/a^5/c-2/c/a^6/(x-1/a)*(-a^2*(x-1/a
)^2-2*a*(x-1/a))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.56577, size = 228, normalized size = 1.56 \begin{align*} \frac{128 \, a x + 162 \,{\left (a x - 1\right )} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{a x}\right ) +{\left (6 \, a^{4} x^{4} + 10 \, a^{3} x^{3} + 17 \, a^{2} x^{2} + 47 \, a x - 128\right )} \sqrt{-a^{2} x^{2} + 1} - 128}{24 \,{\left (a^{6} c x - a^{5} c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c),x, algorithm="fricas")

[Out]

1/24*(128*a*x + 162*(a*x - 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + (6*a^4*x^4 + 10*a^3*x^3 + 17*a^2*x^2 +
47*a*x - 128)*sqrt(-a^2*x^2 + 1) - 128)/(a^6*c*x - a^5*c)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{\int \frac{x^{4}}{a x \sqrt{- a^{2} x^{2} + 1} - \sqrt{- a^{2} x^{2} + 1}}\, dx + \int \frac{a x^{5}}{a x \sqrt{- a^{2} x^{2} + 1} - \sqrt{- a^{2} x^{2} + 1}}\, dx}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**4/(-a*c*x+c),x)

[Out]

-(Integral(x**4/(a*x*sqrt(-a**2*x**2 + 1) - sqrt(-a**2*x**2 + 1)), x) + Integral(a*x**5/(a*x*sqrt(-a**2*x**2 +
 1) - sqrt(-a**2*x**2 + 1)), x))/c

________________________________________________________________________________________

Giac [A]  time = 1.21367, size = 154, normalized size = 1.05 \begin{align*} \frac{1}{24} \, \sqrt{-a^{2} x^{2} + 1}{\left ({\left (2 \, x{\left (\frac{3 \, x}{a^{2} c} + \frac{8}{a^{3} c}\right )} + \frac{33}{a^{4} c}\right )} x + \frac{80}{a^{5} c}\right )} - \frac{27 \, \arcsin \left (a x\right ) \mathrm{sgn}\left (a\right )}{8 \, a^{4} c{\left | a \right |}} + \frac{4}{a^{4} c{\left (\frac{\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a}{a^{2} x} - 1\right )}{\left | a \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c),x, algorithm="giac")

[Out]

1/24*sqrt(-a^2*x^2 + 1)*((2*x*(3*x/(a^2*c) + 8/(a^3*c)) + 33/(a^4*c))*x + 80/(a^5*c)) - 27/8*arcsin(a*x)*sgn(a
)/(a^4*c*abs(a)) + 4/(a^4*c*((sqrt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) - 1)*abs(a))