3.326 \(\int \frac{e^{\tanh ^{-1}(a x)} (c-a c x)^4}{x^7} \, dx\)

Optimal. Leaf size=156 \[ -\frac{7 a^4 c^4 \sqrt{1-a^2 x^2}}{16 x^2}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{7}{16} a^6 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right ) \]

[Out]

(-7*a^4*c^4*Sqrt[1 - a^2*x^2])/(16*x^2) - (c^4*(1 - a^2*x^2)^(3/2))/(6*x^6) + (3*a*c^4*(1 - a^2*x^2)^(3/2))/(5
*x^5) - (7*a^2*c^4*(1 - a^2*x^2)^(3/2))/(8*x^4) + (11*a^3*c^4*(1 - a^2*x^2)^(3/2))/(15*x^3) + (7*a^6*c^4*ArcTa
nh[Sqrt[1 - a^2*x^2]])/16

________________________________________________________________________________________

Rubi [A]  time = 0.263734, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.421, Rules used = {6128, 1807, 835, 807, 266, 47, 63, 208} \[ -\frac{7 a^4 c^4 \sqrt{1-a^2 x^2}}{16 x^2}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{7}{16} a^6 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*(c - a*c*x)^4)/x^7,x]

[Out]

(-7*a^4*c^4*Sqrt[1 - a^2*x^2])/(16*x^2) - (c^4*(1 - a^2*x^2)^(3/2))/(6*x^6) + (3*a*c^4*(1 - a^2*x^2)^(3/2))/(5
*x^5) - (7*a^2*c^4*(1 - a^2*x^2)^(3/2))/(8*x^4) + (11*a^3*c^4*(1 - a^2*x^2)^(3/2))/(15*x^3) + (7*a^6*c^4*ArcTa
nh[Sqrt[1 - a^2*x^2]])/16

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)} (c-a c x)^4}{x^7} \, dx &=c \int \frac{(c-a c x)^3 \sqrt{1-a^2 x^2}}{x^7} \, dx\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}-\frac{1}{6} c \int \frac{\sqrt{1-a^2 x^2} \left (18 a c^3-21 a^2 c^3 x+6 a^3 c^3 x^2\right )}{x^6} \, dx\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}+\frac{1}{30} c \int \frac{\left (105 a^2 c^3-66 a^3 c^3 x\right ) \sqrt{1-a^2 x^2}}{x^5} \, dx\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}-\frac{1}{120} c \int \frac{\left (264 a^3 c^3-105 a^4 c^3 x\right ) \sqrt{1-a^2 x^2}}{x^4} \, dx\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}+\frac{1}{8} \left (7 a^4 c^4\right ) \int \frac{\sqrt{1-a^2 x^2}}{x^3} \, dx\\ &=-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}+\frac{1}{16} \left (7 a^4 c^4\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-a^2 x}}{x^2} \, dx,x,x^2\right )\\ &=-\frac{7 a^4 c^4 \sqrt{1-a^2 x^2}}{16 x^2}-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}-\frac{1}{32} \left (7 a^6 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac{7 a^4 c^4 \sqrt{1-a^2 x^2}}{16 x^2}-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}+\frac{1}{16} \left (7 a^4 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a^2}-\frac{x^2}{a^2}} \, dx,x,\sqrt{1-a^2 x^2}\right )\\ &=-\frac{7 a^4 c^4 \sqrt{1-a^2 x^2}}{16 x^2}-\frac{c^4 \left (1-a^2 x^2\right )^{3/2}}{6 x^6}+\frac{3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}-\frac{7 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{8 x^4}+\frac{11 a^3 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}+\frac{7}{16} a^6 c^4 \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )\\ \end{align*}

Mathematica [A]  time = 0.0367067, size = 115, normalized size = 0.74 \[ \frac{c^4 \left (176 a^7 x^7-105 a^6 x^6-208 a^5 x^5+275 a^4 x^4-112 a^3 x^3-130 a^2 x^2+105 a^6 x^6 \sqrt{1-a^2 x^2} \tanh ^{-1}\left (\sqrt{1-a^2 x^2}\right )+144 a x-40\right )}{240 x^6 \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*(c - a*c*x)^4)/x^7,x]

[Out]

(c^4*(-40 + 144*a*x - 130*a^2*x^2 - 112*a^3*x^3 + 275*a^4*x^4 - 208*a^5*x^5 - 105*a^6*x^6 + 176*a^7*x^7 + 105*
a^6*x^6*Sqrt[1 - a^2*x^2]*ArcTanh[Sqrt[1 - a^2*x^2]]))/(240*x^6*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 255, normalized size = 1.6 \begin{align*}{c}^{4} \left ({\frac{17\,{a}^{2}}{6} \left ( -{\frac{1}{4\,{x}^{4}}\sqrt{-{a}^{2}{x}^{2}+1}}+{\frac{3\,{a}^{2}}{4} \left ( -{\frac{1}{2\,{x}^{2}}\sqrt{-{a}^{2}{x}^{2}+1}}-{\frac{{a}^{2}}{2}{\it Artanh} \left ({\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}} \right ) } \right ) } \right ) }-{\frac{{a}^{5}}{x}\sqrt{-{a}^{2}{x}^{2}+1}}-3\,a \left ( -1/5\,{\frac{\sqrt{-{a}^{2}{x}^{2}+1}}{{x}^{5}}}+4/5\,{a}^{2} \left ( -1/3\,{\frac{\sqrt{-{a}^{2}{x}^{2}+1}}{{x}^{3}}}-2/3\,{\frac{{a}^{2}\sqrt{-{a}^{2}{x}^{2}+1}}{x}} \right ) \right ) -{\frac{1}{6\,{x}^{6}}\sqrt{-{a}^{2}{x}^{2}+1}}-3\,{a}^{4} \left ( -1/2\,{\frac{\sqrt{-{a}^{2}{x}^{2}+1}}{{x}^{2}}}-1/2\,{a}^{2}{\it Artanh} \left ({\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}} \right ) \right ) +2\,{a}^{3} \left ( -1/3\,{\frac{\sqrt{-{a}^{2}{x}^{2}+1}}{{x}^{3}}}-2/3\,{\frac{{a}^{2}\sqrt{-{a}^{2}{x}^{2}+1}}{x}} \right ) \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^7,x)

[Out]

c^4*(17/6*a^2*(-1/4*(-a^2*x^2+1)^(1/2)/x^4+3/4*a^2*(-1/2*(-a^2*x^2+1)^(1/2)/x^2-1/2*a^2*arctanh(1/(-a^2*x^2+1)
^(1/2))))-a^5/x*(-a^2*x^2+1)^(1/2)-3*a*(-1/5/x^5*(-a^2*x^2+1)^(1/2)+4/5*a^2*(-1/3*(-a^2*x^2+1)^(1/2)/x^3-2/3*a
^2*(-a^2*x^2+1)^(1/2)/x))-1/6/x^6*(-a^2*x^2+1)^(1/2)-3*a^4*(-1/2*(-a^2*x^2+1)^(1/2)/x^2-1/2*a^2*arctanh(1/(-a^
2*x^2+1)^(1/2)))+2*a^3*(-1/3*(-a^2*x^2+1)^(1/2)/x^3-2/3*a^2*(-a^2*x^2+1)^(1/2)/x))

________________________________________________________________________________________

Maxima [A]  time = 1.43569, size = 227, normalized size = 1.46 \begin{align*} \frac{7}{16} \, a^{6} c^{4} \log \left (\frac{2 \, \sqrt{-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac{2}{{\left | x \right |}}\right ) - \frac{11 \, \sqrt{-a^{2} x^{2} + 1} a^{5} c^{4}}{15 \, x} + \frac{7 \, \sqrt{-a^{2} x^{2} + 1} a^{4} c^{4}}{16 \, x^{2}} + \frac{2 \, \sqrt{-a^{2} x^{2} + 1} a^{3} c^{4}}{15 \, x^{3}} - \frac{17 \, \sqrt{-a^{2} x^{2} + 1} a^{2} c^{4}}{24 \, x^{4}} + \frac{3 \, \sqrt{-a^{2} x^{2} + 1} a c^{4}}{5 \, x^{5}} - \frac{\sqrt{-a^{2} x^{2} + 1} c^{4}}{6 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^7,x, algorithm="maxima")

[Out]

7/16*a^6*c^4*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - 11/15*sqrt(-a^2*x^2 + 1)*a^5*c^4/x + 7/16*sqrt(-a^2
*x^2 + 1)*a^4*c^4/x^2 + 2/15*sqrt(-a^2*x^2 + 1)*a^3*c^4/x^3 - 17/24*sqrt(-a^2*x^2 + 1)*a^2*c^4/x^4 + 3/5*sqrt(
-a^2*x^2 + 1)*a*c^4/x^5 - 1/6*sqrt(-a^2*x^2 + 1)*c^4/x^6

________________________________________________________________________________________

Fricas [A]  time = 1.6049, size = 239, normalized size = 1.53 \begin{align*} -\frac{105 \, a^{6} c^{4} x^{6} \log \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{x}\right ) +{\left (176 \, a^{5} c^{4} x^{5} - 105 \, a^{4} c^{4} x^{4} - 32 \, a^{3} c^{4} x^{3} + 170 \, a^{2} c^{4} x^{2} - 144 \, a c^{4} x + 40 \, c^{4}\right )} \sqrt{-a^{2} x^{2} + 1}}{240 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^7,x, algorithm="fricas")

[Out]

-1/240*(105*a^6*c^4*x^6*log((sqrt(-a^2*x^2 + 1) - 1)/x) + (176*a^5*c^4*x^5 - 105*a^4*c^4*x^4 - 32*a^3*c^4*x^3
+ 170*a^2*c^4*x^2 - 144*a*c^4*x + 40*c^4)*sqrt(-a^2*x^2 + 1))/x^6

________________________________________________________________________________________

Sympy [C]  time = 17.6997, size = 801, normalized size = 5.13 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(-a*c*x+c)**4/x**7,x)

[Out]

a**5*c**4*Piecewise((-I*sqrt(a**2*x**2 - 1)/x, Abs(a**2*x**2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True)) - 3*a**4*
c**4*Piecewise((-a**2*acosh(1/(a*x))/2 - a*sqrt(-1 + 1/(a**2*x**2))/(2*x), 1/Abs(a**2*x**2) > 1), (I*a**2*asin
(1/(a*x))/2 - I*a/(2*x*sqrt(1 - 1/(a**2*x**2))) + I/(2*a*x**3*sqrt(1 - 1/(a**2*x**2))), True)) + 2*a**3*c**4*P
iecewise((-2*I*a**2*sqrt(a**2*x**2 - 1)/(3*x) - I*sqrt(a**2*x**2 - 1)/(3*x**3), Abs(a**2*x**2) > 1), (-2*a**2*
sqrt(-a**2*x**2 + 1)/(3*x) - sqrt(-a**2*x**2 + 1)/(3*x**3), True)) + 2*a**2*c**4*Piecewise((-3*a**4*acosh(1/(a
*x))/8 + 3*a**3/(8*x*sqrt(-1 + 1/(a**2*x**2))) - a/(8*x**3*sqrt(-1 + 1/(a**2*x**2))) - 1/(4*a*x**5*sqrt(-1 + 1
/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (3*I*a**4*asin(1/(a*x))/8 - 3*I*a**3/(8*x*sqrt(1 - 1/(a**2*x**2))) + I*
a/(8*x**3*sqrt(1 - 1/(a**2*x**2))) + I/(4*a*x**5*sqrt(1 - 1/(a**2*x**2))), True)) - 3*a*c**4*Piecewise((-8*a**
5*sqrt(-1 + 1/(a**2*x**2))/15 - 4*a**3*sqrt(-1 + 1/(a**2*x**2))/(15*x**2) - a*sqrt(-1 + 1/(a**2*x**2))/(5*x**4
), 1/Abs(a**2*x**2) > 1), (-8*I*a**5*sqrt(1 - 1/(a**2*x**2))/15 - 4*I*a**3*sqrt(1 - 1/(a**2*x**2))/(15*x**2) -
 I*a*sqrt(1 - 1/(a**2*x**2))/(5*x**4), True)) + c**4*Piecewise((-5*a**6*acosh(1/(a*x))/16 + 5*a**5/(16*x*sqrt(
-1 + 1/(a**2*x**2))) - 5*a**3/(48*x**3*sqrt(-1 + 1/(a**2*x**2))) - a/(24*x**5*sqrt(-1 + 1/(a**2*x**2))) - 1/(6
*a*x**7*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (5*I*a**6*asin(1/(a*x))/16 - 5*I*a**5/(16*x*sqrt(1 -
 1/(a**2*x**2))) + 5*I*a**3/(48*x**3*sqrt(1 - 1/(a**2*x**2))) + I*a/(24*x**5*sqrt(1 - 1/(a**2*x**2))) + I/(6*a
*x**7*sqrt(1 - 1/(a**2*x**2))), True))

________________________________________________________________________________________

Giac [B]  time = 1.17995, size = 572, normalized size = 3.67 \begin{align*} \frac{{\left (5 \, a^{7} c^{4} - \frac{36 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )} a^{5} c^{4}}{x} + \frac{105 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{2} a^{3} c^{4}}{x^{2}} - \frac{140 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{3} a c^{4}}{x^{3}} - \frac{15 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{4} c^{4}}{a x^{4}} + \frac{600 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{5} c^{4}}{a^{3} x^{5}}\right )} a^{12} x^{6}}{1920 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{6}{\left | a \right |}} + \frac{7 \, a^{7} c^{4} \log \left (\frac{{\left | -2 \, \sqrt{-a^{2} x^{2} + 1}{\left | a \right |} - 2 \, a \right |}}{2 \, a^{2}{\left | x \right |}}\right )}{16 \,{\left | a \right |}} - \frac{\frac{600 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )} a^{9} c^{4}{\left | a \right |}}{x} - \frac{15 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{2} a^{7} c^{4}{\left | a \right |}}{x^{2}} - \frac{140 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{3} a^{5} c^{4}{\left | a \right |}}{x^{3}} + \frac{105 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{4} a^{3} c^{4}{\left | a \right |}}{x^{4}} - \frac{36 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{5} a c^{4}{\left | a \right |}}{x^{5}} + \frac{5 \,{\left (\sqrt{-a^{2} x^{2} + 1}{\left | a \right |} + a\right )}^{6} c^{4}{\left | a \right |}}{a x^{6}}}{1920 \, a^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^7,x, algorithm="giac")

[Out]

1/1920*(5*a^7*c^4 - 36*(sqrt(-a^2*x^2 + 1)*abs(a) + a)*a^5*c^4/x + 105*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*a^3*c
^4/x^2 - 140*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^3*a*c^4/x^3 - 15*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*c^4/(a*x^4) +
600*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^5*c^4/(a^3*x^5))*a^12*x^6/((sqrt(-a^2*x^2 + 1)*abs(a) + a)^6*abs(a)) + 7/1
6*a^7*c^4*log(1/2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) - 1/1920*(600*(sqrt(-a^2*x^2 +
1)*abs(a) + a)*a^9*c^4*abs(a)/x - 15*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*a^7*c^4*abs(a)/x^2 - 140*(sqrt(-a^2*x^2
 + 1)*abs(a) + a)^3*a^5*c^4*abs(a)/x^3 + 105*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*a^3*c^4*abs(a)/x^4 - 36*(sqrt(-
a^2*x^2 + 1)*abs(a) + a)^5*a*c^4*abs(a)/x^5 + 5*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^6*c^4*abs(a)/(a*x^6))/a^6