3.17 \(\int \frac{e^{2 \tanh ^{-1}(a x)}}{x^3} \, dx\)

Optimal. Leaf size=33 \[ 2 a^2 \log (x)-2 a^2 \log (1-a x)-\frac{2 a}{x}-\frac{1}{2 x^2} \]

[Out]

-1/(2*x^2) - (2*a)/x + 2*a^2*Log[x] - 2*a^2*Log[1 - a*x]

________________________________________________________________________________________

Rubi [A]  time = 0.0322523, antiderivative size = 33, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6126, 77} \[ 2 a^2 \log (x)-2 a^2 \log (1-a x)-\frac{2 a}{x}-\frac{1}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])/x^3,x]

[Out]

-1/(2*x^2) - (2*a)/x + 2*a^2*Log[x] - 2*a^2*Log[1 - a*x]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{e^{2 \tanh ^{-1}(a x)}}{x^3} \, dx &=\int \frac{1+a x}{x^3 (1-a x)} \, dx\\ &=\int \left (\frac{1}{x^3}+\frac{2 a}{x^2}+\frac{2 a^2}{x}-\frac{2 a^3}{-1+a x}\right ) \, dx\\ &=-\frac{1}{2 x^2}-\frac{2 a}{x}+2 a^2 \log (x)-2 a^2 \log (1-a x)\\ \end{align*}

Mathematica [A]  time = 0.0109985, size = 33, normalized size = 1. \[ 2 a^2 \log (x)-2 a^2 \log (1-a x)-\frac{2 a}{x}-\frac{1}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])/x^3,x]

[Out]

-1/(2*x^2) - (2*a)/x + 2*a^2*Log[x] - 2*a^2*Log[1 - a*x]

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 31, normalized size = 0.9 \begin{align*} -{\frac{1}{2\,{x}^{2}}}-2\,{\frac{a}{x}}+2\,{a}^{2}\ln \left ( x \right ) -2\,{a}^{2}\ln \left ( ax-1 \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)/x^3,x)

[Out]

-1/2/x^2-2*a/x+2*a^2*ln(x)-2*a^2*ln(a*x-1)

________________________________________________________________________________________

Maxima [A]  time = 0.94655, size = 41, normalized size = 1.24 \begin{align*} -2 \, a^{2} \log \left (a x - 1\right ) + 2 \, a^{2} \log \left (x\right ) - \frac{4 \, a x + 1}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^3,x, algorithm="maxima")

[Out]

-2*a^2*log(a*x - 1) + 2*a^2*log(x) - 1/2*(4*a*x + 1)/x^2

________________________________________________________________________________________

Fricas [A]  time = 1.67456, size = 89, normalized size = 2.7 \begin{align*} -\frac{4 \, a^{2} x^{2} \log \left (a x - 1\right ) - 4 \, a^{2} x^{2} \log \left (x\right ) + 4 \, a x + 1}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^3,x, algorithm="fricas")

[Out]

-1/2*(4*a^2*x^2*log(a*x - 1) - 4*a^2*x^2*log(x) + 4*a*x + 1)/x^2

________________________________________________________________________________________

Sympy [A]  time = 0.489527, size = 27, normalized size = 0.82 \begin{align*} - 2 a^{2} \left (- \log{\left (x \right )} + \log{\left (x - \frac{1}{a} \right )}\right ) - \frac{4 a x + 1}{2 x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)/x**3,x)

[Out]

-2*a**2*(-log(x) + log(x - 1/a)) - (4*a*x + 1)/(2*x**2)

________________________________________________________________________________________

Giac [A]  time = 1.15007, size = 43, normalized size = 1.3 \begin{align*} -2 \, a^{2} \log \left ({\left | a x - 1 \right |}\right ) + 2 \, a^{2} \log \left ({\left | x \right |}\right ) - \frac{4 \, a x + 1}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^3,x, algorithm="giac")

[Out]

-2*a^2*log(abs(a*x - 1)) + 2*a^2*log(abs(x)) - 1/2*(4*a*x + 1)/x^2