3.16 \(\int \frac{e^{2 \tanh ^{-1}(a x)}}{x^2} \, dx\)

Optimal. Leaf size=21 \[ 2 a \log (x)-2 a \log (1-a x)-\frac{1}{x} \]

[Out]

-x^(-1) + 2*a*Log[x] - 2*a*Log[1 - a*x]

________________________________________________________________________________________

Rubi [A]  time = 0.0283413, antiderivative size = 21, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6126, 77} \[ 2 a \log (x)-2 a \log (1-a x)-\frac{1}{x} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])/x^2,x]

[Out]

-x^(-1) + 2*a*Log[x] - 2*a*Log[1 - a*x]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{e^{2 \tanh ^{-1}(a x)}}{x^2} \, dx &=\int \frac{1+a x}{x^2 (1-a x)} \, dx\\ &=\int \left (\frac{1}{x^2}+\frac{2 a}{x}-\frac{2 a^2}{-1+a x}\right ) \, dx\\ &=-\frac{1}{x}+2 a \log (x)-2 a \log (1-a x)\\ \end{align*}

Mathematica [A]  time = 0.0098314, size = 21, normalized size = 1. \[ 2 a \log (x)-2 a \log (1-a x)-\frac{1}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])/x^2,x]

[Out]

-x^(-1) + 2*a*Log[x] - 2*a*Log[1 - a*x]

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 21, normalized size = 1. \begin{align*} -{x}^{-1}+2\,a\ln \left ( x \right ) -2\,a\ln \left ( ax-1 \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)/x^2,x)

[Out]

-1/x+2*a*ln(x)-2*a*ln(a*x-1)

________________________________________________________________________________________

Maxima [A]  time = 0.950452, size = 27, normalized size = 1.29 \begin{align*} -2 \, a \log \left (a x - 1\right ) + 2 \, a \log \left (x\right ) - \frac{1}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^2,x, algorithm="maxima")

[Out]

-2*a*log(a*x - 1) + 2*a*log(x) - 1/x

________________________________________________________________________________________

Fricas [A]  time = 1.7354, size = 59, normalized size = 2.81 \begin{align*} -\frac{2 \, a x \log \left (a x - 1\right ) - 2 \, a x \log \left (x\right ) + 1}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^2,x, algorithm="fricas")

[Out]

-(2*a*x*log(a*x - 1) - 2*a*x*log(x) + 1)/x

________________________________________________________________________________________

Sympy [A]  time = 0.553719, size = 17, normalized size = 0.81 \begin{align*} - 2 a \left (- \log{\left (x \right )} + \log{\left (x - \frac{1}{a} \right )}\right ) - \frac{1}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)/x**2,x)

[Out]

-2*a*(-log(x) + log(x - 1/a)) - 1/x

________________________________________________________________________________________

Giac [A]  time = 1.16747, size = 30, normalized size = 1.43 \begin{align*} -2 \, a \log \left ({\left | a x - 1 \right |}\right ) + 2 \, a \log \left ({\left | x \right |}\right ) - \frac{1}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)/x^2,x, algorithm="giac")

[Out]

-2*a*log(abs(a*x - 1)) + 2*a*log(abs(x)) - 1/x