3.1212 \(\int \frac{e^{-\tanh ^{-1}(a x)}}{(c-a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=90 \[ \frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{2 a c \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{2 a c (a x+1) \sqrt{c-a^2 c x^2}} \]

[Out]

-Sqrt[1 - a^2*x^2]/(2*a*c*(1 + a*x)*Sqrt[c - a^2*c*x^2]) + (Sqrt[1 - a^2*x^2]*ArcTanh[a*x])/(2*a*c*Sqrt[c - a^
2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0991248, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6143, 6140, 44, 207} \[ \frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{2 a c \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2}}{2 a c (a x+1) \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^ArcTanh[a*x]*(c - a^2*c*x^2)^(3/2)),x]

[Out]

-Sqrt[1 - a^2*x^2]/(2*a*c*(1 + a*x)*Sqrt[c - a^2*c*x^2]) + (Sqrt[1 - a^2*x^2]*ArcTanh[a*x])/(2*a*c*Sqrt[c - a^
2*c*x^2])

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{-\tanh ^{-1}(a x)}}{\left (c-a^2 c x^2\right )^{3/2}} \, dx &=\frac{\sqrt{1-a^2 x^2} \int \frac{e^{-\tanh ^{-1}(a x)}}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{1}{(1-a x) (1+a x)^2} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \left (\frac{1}{2 (1+a x)^2}-\frac{1}{2 \left (-1+a^2 x^2\right )}\right ) \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=-\frac{\sqrt{1-a^2 x^2}}{2 a c (1+a x) \sqrt{c-a^2 c x^2}}-\frac{\sqrt{1-a^2 x^2} \int \frac{1}{-1+a^2 x^2} \, dx}{2 c \sqrt{c-a^2 c x^2}}\\ &=-\frac{\sqrt{1-a^2 x^2}}{2 a c (1+a x) \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{2 a c \sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0397485, size = 59, normalized size = 0.66 \[ \frac{\sqrt{1-a^2 x^2} \left (\frac{\tanh ^{-1}(a x)}{2 a}-\frac{1}{2 a (a x+1)}\right )}{c \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^ArcTanh[a*x]*(c - a^2*c*x^2)^(3/2)),x]

[Out]

(Sqrt[1 - a^2*x^2]*(-1/(2*a*(1 + a*x)) + ArcTanh[a*x]/(2*a)))/(c*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.093, size = 88, normalized size = 1. \begin{align*} -{\frac{ax\ln \left ( ax+1 \right ) -\ln \left ( ax-1 \right ) xa+\ln \left ( ax+1 \right ) -\ln \left ( ax-1 \right ) -2}{ \left ( 4\,{a}^{2}{x}^{2}-4 \right ){c}^{2}a \left ( ax+1 \right ) }\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(3/2),x)

[Out]

-1/4*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)*(a*x*ln(a*x+1)-ln(a*x-1)*x*a+ln(a*x+1)-ln(a*x-1)-2)/(a^2*x^2-1)
/c^2/a/(a*x+1)

________________________________________________________________________________________

Maxima [A]  time = 1.01435, size = 68, normalized size = 0.76 \begin{align*} -\frac{\sqrt{c}}{2 \,{\left (a^{2} c^{2} x + a c^{2}\right )}} + \frac{\log \left (a x + 1\right )}{4 \, a c^{\frac{3}{2}}} - \frac{\log \left (a x - 1\right )}{4 \, a c^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(c)/(a^2*c^2*x + a*c^2) + 1/4*log(a*x + 1)/(a*c^(3/2)) - 1/4*log(a*x - 1)/(a*c^(3/2))

________________________________________________________________________________________

Fricas [A]  time = 2.7514, size = 707, normalized size = 7.86 \begin{align*} \left [-\frac{4 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} a x -{\left (a^{3} x^{3} + a^{2} x^{2} - a x - 1\right )} \sqrt{c} \log \left (-\frac{a^{6} c x^{6} + 5 \, a^{4} c x^{4} - 5 \, a^{2} c x^{2} - 4 \,{\left (a^{3} x^{3} + a x\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} \sqrt{c} - c}{a^{6} x^{6} - 3 \, a^{4} x^{4} + 3 \, a^{2} x^{2} - 1}\right )}{8 \,{\left (a^{4} c^{2} x^{3} + a^{3} c^{2} x^{2} - a^{2} c^{2} x - a c^{2}\right )}}, -\frac{2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} a x -{\left (a^{3} x^{3} + a^{2} x^{2} - a x - 1\right )} \sqrt{-c} \arctan \left (\frac{2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} a \sqrt{-c} x}{a^{4} c x^{4} - c}\right )}{4 \,{\left (a^{4} c^{2} x^{3} + a^{3} c^{2} x^{2} - a^{2} c^{2} x - a c^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(4*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*a*x - (a^3*x^3 + a^2*x^2 - a*x - 1)*sqrt(c)*log(-(a^6*c*x^6 +
 5*a^4*c*x^4 - 5*a^2*c*x^2 - 4*(a^3*x^3 + a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) - c)/(a^6*x^6 -
 3*a^4*x^4 + 3*a^2*x^2 - 1)))/(a^4*c^2*x^3 + a^3*c^2*x^2 - a^2*c^2*x - a*c^2), -1/4*(2*sqrt(-a^2*c*x^2 + c)*sq
rt(-a^2*x^2 + 1)*a*x - (a^3*x^3 + a^2*x^2 - a*x - 1)*sqrt(-c)*arctan(2*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)
*a*sqrt(-c)*x/(a^4*c*x^4 - c)))/(a^4*c^2*x^3 + a^3*c^2*x^2 - a^2*c^2*x - a*c^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{\left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a**2*x**2+1)**(1/2)/(-a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))/((-c*(a*x - 1)*(a*x + 1))**(3/2)*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{3}{2}}{\left (a x + 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)/((-a^2*c*x^2 + c)^(3/2)*(a*x + 1)), x)