3.1211 \(\int \frac{e^{-\tanh ^{-1}(a x)}}{\sqrt{c-a^2 c x^2}} \, dx\)

Optimal. Leaf size=39 \[ \frac{\sqrt{1-a^2 x^2} \log (a x+1)}{a \sqrt{c-a^2 c x^2}} \]

[Out]

(Sqrt[1 - a^2*x^2]*Log[1 + a*x])/(a*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0746729, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {6143, 6140, 31} \[ \frac{\sqrt{1-a^2 x^2} \log (a x+1)}{a \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^ArcTanh[a*x]*Sqrt[c - a^2*c*x^2]),x]

[Out]

(Sqrt[1 - a^2*x^2]*Log[1 + a*x])/(a*Sqrt[c - a^2*c*x^2])

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{e^{-\tanh ^{-1}(a x)}}{\sqrt{c-a^2 c x^2}} \, dx &=\frac{\sqrt{1-a^2 x^2} \int \frac{e^{-\tanh ^{-1}(a x)}}{\sqrt{1-a^2 x^2}} \, dx}{\sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{1}{1+a x} \, dx}{\sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \log (1+a x)}{a \sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0195006, size = 39, normalized size = 1. \[ \frac{\sqrt{1-a^2 x^2} \log (a x+1)}{a \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^ArcTanh[a*x]*Sqrt[c - a^2*c*x^2]),x]

[Out]

(Sqrt[1 - a^2*x^2]*Log[1 + a*x])/(a*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.081, size = 40, normalized size = 1. \begin{align*}{\frac{\ln \left ( ax+1 \right ) }{ac}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(1/2),x)

[Out]

1/(-a^2*x^2+1)^(1/2)/c/a*(-c*(a^2*x^2-1))^(1/2)*ln(a*x+1)

________________________________________________________________________________________

Maxima [A]  time = 0.988283, size = 18, normalized size = 0.46 \begin{align*} \frac{\log \left (a x + 1\right )}{a \sqrt{c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

log(a*x + 1)/(a*sqrt(c))

________________________________________________________________________________________

Fricas [B]  time = 2.6056, size = 493, normalized size = 12.64 \begin{align*} \left [\frac{\log \left (\frac{a^{6} c x^{6} + 4 \, a^{5} c x^{5} + 5 \, a^{4} c x^{4} - 4 \, a^{2} c x^{2} - 4 \, a c x -{\left (a^{4} x^{4} + 4 \, a^{3} x^{3} + 6 \, a^{2} x^{2} + 4 \, a x\right )} \sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} \sqrt{c} - 2 \, c}{a^{4} x^{4} + 2 \, a^{3} x^{3} - 2 \, a x - 1}\right )}{2 \, a \sqrt{c}}, \frac{\sqrt{-c} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c}{\left (a^{2} x^{2} + 2 \, a x + 2\right )} \sqrt{-a^{2} x^{2} + 1} \sqrt{-c}}{a^{4} c x^{4} + 2 \, a^{3} c x^{3} - a^{2} c x^{2} - 2 \, a c x}\right )}{a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log((a^6*c*x^6 + 4*a^5*c*x^5 + 5*a^4*c*x^4 - 4*a^2*c*x^2 - 4*a*c*x - (a^4*x^4 + 4*a^3*x^3 + 6*a^2*x^2 + 4
*a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) - 2*c)/(a^4*x^4 + 2*a^3*x^3 - 2*a*x - 1))/(a*sqrt(c)), s
qrt(-c)*arctan(sqrt(-a^2*c*x^2 + c)*(a^2*x^2 + 2*a*x + 2)*sqrt(-a^2*x^2 + 1)*sqrt(-c)/(a^4*c*x^4 + 2*a^3*c*x^3
 - a^2*c*x^2 - 2*a*c*x))/(a*c)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{\sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a**2*x**2+1)**(1/2)/(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))/(sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}}{\sqrt{-a^{2} c x^{2} + c}{\left (a x + 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)/(sqrt(-a^2*c*x^2 + c)*(a*x + 1)), x)