3.1094 \(\int \frac{e^{2 \tanh ^{-1}(a x)} (c-a^2 c x^2)^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=106 \[ \frac{5}{8} a^4 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right )-\frac{5 a^2 c \sqrt{c-a^2 c x^2}}{8 x^2}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4} \]

[Out]

(-5*a^2*c*Sqrt[c - a^2*c*x^2])/(8*x^2) - (c - a^2*c*x^2)^(3/2)/(4*x^4) - (2*a*(c - a^2*c*x^2)^(3/2))/(3*x^3) +
 (5*a^4*c^(3/2)*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]])/8

________________________________________________________________________________________

Rubi [A]  time = 0.256783, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {6151, 1807, 807, 266, 47, 63, 208} \[ \frac{5}{8} a^4 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right )-\frac{5 a^2 c \sqrt{c-a^2 c x^2}}{8 x^2}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4} \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^5,x]

[Out]

(-5*a^2*c*Sqrt[c - a^2*c*x^2])/(8*x^2) - (c - a^2*c*x^2)^(3/2)/(4*x^4) - (2*a*(c - a^2*c*x^2)^(3/2))/(3*x^3) +
 (5*a^4*c^(3/2)*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]])/8

Rule 6151

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^(n/2), Int[x^m*(c
 + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] ||
 GtQ[c, 0]) && IGtQ[n/2, 0]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{2 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^5} \, dx &=c \int \frac{(1+a x)^2 \sqrt{c-a^2 c x^2}}{x^5} \, dx\\ &=-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{1}{4} \int \frac{\left (-8 a c-5 a^2 c x\right ) \sqrt{c-a^2 c x^2}}{x^4} \, dx\\ &=-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+\frac{1}{4} \left (5 a^2 c\right ) \int \frac{\sqrt{c-a^2 c x^2}}{x^3} \, dx\\ &=-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+\frac{1}{8} \left (5 a^2 c\right ) \operatorname{Subst}\left (\int \frac{\sqrt{c-a^2 c x}}{x^2} \, dx,x,x^2\right )\\ &=-\frac{5 a^2 c \sqrt{c-a^2 c x^2}}{8 x^2}-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\frac{1}{16} \left (5 a^4 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c-a^2 c x}} \, dx,x,x^2\right )\\ &=-\frac{5 a^2 c \sqrt{c-a^2 c x^2}}{8 x^2}-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+\frac{1}{8} \left (5 a^2 c\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a^2}-\frac{x^2}{a^2 c}} \, dx,x,\sqrt{c-a^2 c x^2}\right )\\ &=-\frac{5 a^2 c \sqrt{c-a^2 c x^2}}{8 x^2}-\frac{\left (c-a^2 c x^2\right )^{3/2}}{4 x^4}-\frac{2 a \left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+\frac{5}{8} a^4 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c-a^2 c x^2}}{\sqrt{c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.149083, size = 96, normalized size = 0.91 \[ \frac{5}{8} a^4 c^{3/2} \log \left (\sqrt{c} \sqrt{c-a^2 c x^2}+c\right )-\frac{5}{8} a^4 c^{3/2} \log (x)+\frac{c \left (16 a^3 x^3-9 a^2 x^2-16 a x-6\right ) \sqrt{c-a^2 c x^2}}{24 x^4} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^5,x]

[Out]

(c*Sqrt[c - a^2*c*x^2]*(-6 - 16*a*x - 9*a^2*x^2 + 16*a^3*x^3))/(24*x^4) - (5*a^4*c^(3/2)*Log[x])/8 + (5*a^4*c^
(3/2)*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]])/8

________________________________________________________________________________________

Maple [B]  time = 0.054, size = 364, normalized size = 3.4 \begin{align*} -{\frac{1}{4\,c{x}^{4}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{5}{2}}}}-{\frac{7\,{a}^{2}}{8\,c{x}^{2}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{5}{2}}}}-{\frac{5\,{a}^{4}}{24} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}}}+{\frac{5\,{a}^{4}}{8}{c}^{{\frac{3}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,c+2\,\sqrt{c}\sqrt{-{a}^{2}c{x}^{2}+c} \right ) } \right ) }-{\frac{5\,{a}^{4}c}{8}\sqrt{-{a}^{2}c{x}^{2}+c}}-{\frac{2\,{a}^{3}}{3\,cx} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{5}{2}}}}-{\frac{2\,{a}^{5}x}{3} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}}}-{a}^{5}cx\sqrt{-{a}^{2}c{x}^{2}+c}-{{a}^{5}{c}^{2}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-{a}^{2}c{x}^{2}+c}}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}}-{\frac{2\,{a}^{4}}{3} \left ( -c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) \right ) ^{{\frac{3}{2}}}}+{a}^{5}c\sqrt{-c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) }x+{{a}^{5}{c}^{2}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) }}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}}-{\frac{2\,a}{3\,c{x}^{3}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^5,x)

[Out]

-1/4/c/x^4*(-a^2*c*x^2+c)^(5/2)-7/8*a^2/c/x^2*(-a^2*c*x^2+c)^(5/2)-5/24*a^4*(-a^2*c*x^2+c)^(3/2)+5/8*a^4*c^(3/
2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)-5/8*a^4*(-a^2*c*x^2+c)^(1/2)*c-2/3*a^3/c/x*(-a^2*c*x^2+c)^(5/2)-
2/3*a^5*x*(-a^2*c*x^2+c)^(3/2)-a^5*c*x*(-a^2*c*x^2+c)^(1/2)-a^5*c^2/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2
*c*x^2+c)^(1/2))-2/3*a^4*(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(3/2)+a^5*c*(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(1/2)*x
+a^5*c^2/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(1/2))-2/3*a/c/x^3*(-a^2*c*x^2+
c)^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (-a^{2} c x^{2} + c\right )}^{\frac{3}{2}}{\left (a x + 1\right )}^{2}}{{\left (a^{2} x^{2} - 1\right )} x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^5,x, algorithm="maxima")

[Out]

-integrate((-a^2*c*x^2 + c)^(3/2)*(a*x + 1)^2/((a^2*x^2 - 1)*x^5), x)

________________________________________________________________________________________

Fricas [A]  time = 2.70584, size = 437, normalized size = 4.12 \begin{align*} \left [\frac{15 \, a^{4} c^{\frac{3}{2}} x^{4} \log \left (-\frac{a^{2} c x^{2} - 2 \, \sqrt{-a^{2} c x^{2} + c} \sqrt{c} - 2 \, c}{x^{2}}\right ) + 2 \,{\left (16 \, a^{3} c x^{3} - 9 \, a^{2} c x^{2} - 16 \, a c x - 6 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{48 \, x^{4}}, \frac{15 \, a^{4} \sqrt{-c} c x^{4} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-c}}{a^{2} c x^{2} - c}\right ) +{\left (16 \, a^{3} c x^{3} - 9 \, a^{2} c x^{2} - 16 \, a c x - 6 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{24 \, x^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^5,x, algorithm="fricas")

[Out]

[1/48*(15*a^4*c^(3/2)*x^4*log(-(a^2*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) + 2*(16*a^3*c*x^3 - 9*a
^2*c*x^2 - 16*a*c*x - 6*c)*sqrt(-a^2*c*x^2 + c))/x^4, 1/24*(15*a^4*sqrt(-c)*c*x^4*arctan(sqrt(-a^2*c*x^2 + c)*
sqrt(-c)/(a^2*c*x^2 - c)) + (16*a^3*c*x^3 - 9*a^2*c*x^2 - 16*a*c*x - 6*c)*sqrt(-a^2*c*x^2 + c))/x^4]

________________________________________________________________________________________

Sympy [C]  time = 8.46438, size = 447, normalized size = 4.22 \begin{align*} a^{2} c \left (\begin{cases} \frac{a^{2} \sqrt{c} \operatorname{acosh}{\left (\frac{1}{a x} \right )}}{2} + \frac{a \sqrt{c}}{2 x \sqrt{-1 + \frac{1}{a^{2} x^{2}}}} - \frac{\sqrt{c}}{2 a x^{3} \sqrt{-1 + \frac{1}{a^{2} x^{2}}}} & \text{for}\: \frac{1}{\left |{a^{2} x^{2}}\right |} > 1 \\- \frac{i a^{2} \sqrt{c} \operatorname{asin}{\left (\frac{1}{a x} \right )}}{2} - \frac{i a \sqrt{c} \sqrt{1 - \frac{1}{a^{2} x^{2}}}}{2 x} & \text{otherwise} \end{cases}\right ) + 2 a c \left (\begin{cases} \frac{a^{3} \sqrt{c} \sqrt{-1 + \frac{1}{a^{2} x^{2}}}}{3} - \frac{a \sqrt{c} \sqrt{-1 + \frac{1}{a^{2} x^{2}}}}{3 x^{2}} & \text{for}\: \frac{1}{\left |{a^{2} x^{2}}\right |} > 1 \\\frac{i a^{3} \sqrt{c} \sqrt{1 - \frac{1}{a^{2} x^{2}}}}{3} - \frac{i a \sqrt{c} \sqrt{1 - \frac{1}{a^{2} x^{2}}}}{3 x^{2}} & \text{otherwise} \end{cases}\right ) + c \left (\begin{cases} \frac{a^{4} \sqrt{c} \operatorname{acosh}{\left (\frac{1}{a x} \right )}}{8} - \frac{a^{3} \sqrt{c}}{8 x \sqrt{-1 + \frac{1}{a^{2} x^{2}}}} + \frac{3 a \sqrt{c}}{8 x^{3} \sqrt{-1 + \frac{1}{a^{2} x^{2}}}} - \frac{\sqrt{c}}{4 a x^{5} \sqrt{-1 + \frac{1}{a^{2} x^{2}}}} & \text{for}\: \frac{1}{\left |{a^{2} x^{2}}\right |} > 1 \\- \frac{i a^{4} \sqrt{c} \operatorname{asin}{\left (\frac{1}{a x} \right )}}{8} + \frac{i a^{3} \sqrt{c}}{8 x \sqrt{1 - \frac{1}{a^{2} x^{2}}}} - \frac{3 i a \sqrt{c}}{8 x^{3} \sqrt{1 - \frac{1}{a^{2} x^{2}}}} + \frac{i \sqrt{c}}{4 a x^{5} \sqrt{1 - \frac{1}{a^{2} x^{2}}}} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(3/2)/x**5,x)

[Out]

a**2*c*Piecewise((a**2*sqrt(c)*acosh(1/(a*x))/2 + a*sqrt(c)/(2*x*sqrt(-1 + 1/(a**2*x**2))) - sqrt(c)/(2*a*x**3
*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (-I*a**2*sqrt(c)*asin(1/(a*x))/2 - I*a*sqrt(c)*sqrt(1 - 1/(
a**2*x**2))/(2*x), True)) + 2*a*c*Piecewise((a**3*sqrt(c)*sqrt(-1 + 1/(a**2*x**2))/3 - a*sqrt(c)*sqrt(-1 + 1/(
a**2*x**2))/(3*x**2), 1/Abs(a**2*x**2) > 1), (I*a**3*sqrt(c)*sqrt(1 - 1/(a**2*x**2))/3 - I*a*sqrt(c)*sqrt(1 -
1/(a**2*x**2))/(3*x**2), True)) + c*Piecewise((a**4*sqrt(c)*acosh(1/(a*x))/8 - a**3*sqrt(c)/(8*x*sqrt(-1 + 1/(
a**2*x**2))) + 3*a*sqrt(c)/(8*x**3*sqrt(-1 + 1/(a**2*x**2))) - sqrt(c)/(4*a*x**5*sqrt(-1 + 1/(a**2*x**2))), 1/
Abs(a**2*x**2) > 1), (-I*a**4*sqrt(c)*asin(1/(a*x))/8 + I*a**3*sqrt(c)/(8*x*sqrt(1 - 1/(a**2*x**2))) - 3*I*a*s
qrt(c)/(8*x**3*sqrt(1 - 1/(a**2*x**2))) + I*sqrt(c)/(4*a*x**5*sqrt(1 - 1/(a**2*x**2))), True))

________________________________________________________________________________________

Giac [B]  time = 1.17848, size = 501, normalized size = 4.73 \begin{align*} -\frac{5 \, a^{4} c^{2} \arctan \left (-\frac{\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}}{\sqrt{-c}}\right )}{4 \, \sqrt{-c}} - \frac{9 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{7} a^{4} c^{2} + 48 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{6} a^{3} \sqrt{-c} c^{2}{\left | a \right |} - 33 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{5} a^{4} c^{3} - 48 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{4} a^{3} \sqrt{-c} c^{3}{\left | a \right |} - 33 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{3} a^{4} c^{4} + 16 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{2} a^{3} \sqrt{-c} c^{4}{\left | a \right |} + 9 \,{\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )} a^{4} c^{5} - 16 \, a^{3} \sqrt{-c} c^{5}{\left | a \right |}}{12 \,{\left ({\left (\sqrt{-a^{2} c} x - \sqrt{-a^{2} c x^{2} + c}\right )}^{2} - c\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^5,x, algorithm="giac")

[Out]

-5/4*a^4*c^2*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) - 1/12*(9*(sqrt(-a^2*c)*x - sq
rt(-a^2*c*x^2 + c))^7*a^4*c^2 + 48*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^6*a^3*sqrt(-c)*c^2*abs(a) - 33*(sqr
t(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^5*a^4*c^3 - 48*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^4*a^3*sqrt(-c)*c^3*
abs(a) - 33*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^3*a^4*c^4 + 16*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2*a
^3*sqrt(-c)*c^4*abs(a) + 9*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))*a^4*c^5 - 16*a^3*sqrt(-c)*c^5*abs(a))/((sqr
t(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)^4