3.1089 \(\int e^{2 \tanh ^{-1}(a x)} (c-a^2 c x^2)^{3/2} \, dx\)

Optimal. Leaf size=107 \[ \frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}+\frac{5}{8} c x \sqrt{c-a^2 c x^2}-\frac{(a x+1) \left (c-a^2 c x^2\right )^{3/2}}{4 a}-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a} \]

[Out]

(5*c*x*Sqrt[c - a^2*c*x^2])/8 - (5*(c - a^2*c*x^2)^(3/2))/(12*a) - ((1 + a*x)*(c - a^2*c*x^2)^(3/2))/(4*a) + (
5*c^(3/2)*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]])/(8*a)

________________________________________________________________________________________

Rubi [A]  time = 0.0855183, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {6141, 671, 641, 195, 217, 203} \[ \frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}+\frac{5}{8} c x \sqrt{c-a^2 c x^2}-\frac{(a x+1) \left (c-a^2 c x^2\right )^{3/2}}{4 a}-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2),x]

[Out]

(5*c*x*Sqrt[c - a^2*c*x^2])/8 - (5*(c - a^2*c*x^2)^(3/2))/(12*a) - ((1 + a*x)*(c - a^2*c*x^2)^(3/2))/(4*a) + (
5*c^(3/2)*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]])/(8*a)

Rule 6141

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^(n/2), Int[(c + d*x^2)^(p -
n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) && IGt
Q[n/2, 0]

Rule 671

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(m + 2*p + 1)), x] + Dist[(2*c*d*(m + p))/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p, x]
, x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p
]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int e^{2 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx &=c \int (1+a x)^2 \sqrt{c-a^2 c x^2} \, dx\\ &=-\frac{(1+a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{4} (5 c) \int (1+a x) \sqrt{c-a^2 c x^2} \, dx\\ &=-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}-\frac{(1+a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{4} (5 c) \int \sqrt{c-a^2 c x^2} \, dx\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}-\frac{(1+a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{8} \left (5 c^2\right ) \int \frac{1}{\sqrt{c-a^2 c x^2}} \, dx\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}-\frac{(1+a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{1}{8} \left (5 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c-a^2 c x^2}}\right )\\ &=\frac{5}{8} c x \sqrt{c-a^2 c x^2}-\frac{5 \left (c-a^2 c x^2\right )^{3/2}}{12 a}-\frac{(1+a x) \left (c-a^2 c x^2\right )^{3/2}}{4 a}+\frac{5 c^{3/2} \tan ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c-a^2 c x^2}}\right )}{8 a}\\ \end{align*}

Mathematica [A]  time = 0.0899084, size = 117, normalized size = 1.09 \[ -\frac{c \sqrt{c-a^2 c x^2} \left (\sqrt{a x+1} \left (6 a^4 x^4+10 a^3 x^3-7 a^2 x^2-25 a x+16\right )+30 \sqrt{1-a x} \sin ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{2}}\right )\right )}{24 a \sqrt{1-a x} \sqrt{1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2),x]

[Out]

-(c*Sqrt[c - a^2*c*x^2]*(Sqrt[1 + a*x]*(16 - 25*a*x - 7*a^2*x^2 + 10*a^3*x^3 + 6*a^4*x^4) + 30*Sqrt[1 - a*x]*A
rcSin[Sqrt[1 - a*x]/Sqrt[2]]))/(24*a*Sqrt[1 - a*x]*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.036, size = 186, normalized size = 1.7 \begin{align*} -{\frac{x}{4} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{3}{2}}}}-{\frac{3\,cx}{8}\sqrt{-{a}^{2}c{x}^{2}+c}}-{\frac{3\,{c}^{2}}{8}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-{a}^{2}c{x}^{2}+c}}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}}-{\frac{2}{3\,a} \left ( -c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) \right ) ^{{\frac{3}{2}}}}+c\sqrt{-c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) }x+{{c}^{2}\arctan \left ({x\sqrt{{a}^{2}c}{\frac{1}{\sqrt{-c{a}^{2} \left ( x-{a}^{-1} \right ) ^{2}-2\,ac \left ( x-{a}^{-1} \right ) }}}} \right ){\frac{1}{\sqrt{{a}^{2}c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2),x)

[Out]

-1/4*x*(-a^2*c*x^2+c)^(3/2)-3/8*c*x*(-a^2*c*x^2+c)^(1/2)-3/8*c^2/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*
x^2+c)^(1/2))-2/3/a*(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(3/2)+c*(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(1/2)*x+c^2/(a^2
*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-c*a^2*(x-1/a)^2-2*a*c*(x-1/a))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.68867, size = 413, normalized size = 3.86 \begin{align*} \left [\frac{15 \, \sqrt{-c} c \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt{-a^{2} c x^{2} + c} a \sqrt{-c} x - c\right ) + 2 \,{\left (6 \, a^{3} c x^{3} + 16 \, a^{2} c x^{2} + 9 \, a c x - 16 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{48 \, a}, -\frac{15 \, c^{\frac{3}{2}} \arctan \left (\frac{\sqrt{-a^{2} c x^{2} + c} a \sqrt{c} x}{a^{2} c x^{2} - c}\right ) -{\left (6 \, a^{3} c x^{3} + 16 \, a^{2} c x^{2} + 9 \, a c x - 16 \, c\right )} \sqrt{-a^{2} c x^{2} + c}}{24 \, a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[1/48*(15*sqrt(-c)*c*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + 2*(6*a^3*c*x^3 + 16*a^2*c*x^
2 + 9*a*c*x - 16*c)*sqrt(-a^2*c*x^2 + c))/a, -1/24*(15*c^(3/2)*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*
x^2 - c)) - (6*a^3*c*x^3 + 16*a^2*c*x^2 + 9*a*c*x - 16*c)*sqrt(-a^2*c*x^2 + c))/a]

________________________________________________________________________________________

Sympy [C]  time = 9.04011, size = 340, normalized size = 3.18 \begin{align*} a^{2} c \left (\begin{cases} \frac{i a^{2} \sqrt{c} x^{5}}{4 \sqrt{a^{2} x^{2} - 1}} - \frac{3 i \sqrt{c} x^{3}}{8 \sqrt{a^{2} x^{2} - 1}} + \frac{i \sqrt{c} x}{8 a^{2} \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} \operatorname{acosh}{\left (a x \right )}}{8 a^{3}} & \text{for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac{a^{2} \sqrt{c} x^{5}}{4 \sqrt{- a^{2} x^{2} + 1}} + \frac{3 \sqrt{c} x^{3}}{8 \sqrt{- a^{2} x^{2} + 1}} - \frac{\sqrt{c} x}{8 a^{2} \sqrt{- a^{2} x^{2} + 1}} + \frac{\sqrt{c} \operatorname{asin}{\left (a x \right )}}{8 a^{3}} & \text{otherwise} \end{cases}\right ) + 2 a c \left (\begin{cases} 0 & \text{for}\: c = 0 \\\frac{\sqrt{c} x^{2}}{2} & \text{for}\: a^{2} = 0 \\- \frac{\left (- a^{2} c x^{2} + c\right )^{\frac{3}{2}}}{3 a^{2} c} & \text{otherwise} \end{cases}\right ) + c \left (\begin{cases} \frac{i a^{2} \sqrt{c} x^{3}}{2 \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} x}{2 \sqrt{a^{2} x^{2} - 1}} - \frac{i \sqrt{c} \operatorname{acosh}{\left (a x \right )}}{2 a} & \text{for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac{\sqrt{c} x \sqrt{- a^{2} x^{2} + 1}}{2} + \frac{\sqrt{c} \operatorname{asin}{\left (a x \right )}}{2 a} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(3/2),x)

[Out]

a**2*c*Piecewise((I*a**2*sqrt(c)*x**5/(4*sqrt(a**2*x**2 - 1)) - 3*I*sqrt(c)*x**3/(8*sqrt(a**2*x**2 - 1)) + I*s
qrt(c)*x/(8*a**2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*acosh(a*x)/(8*a**3), Abs(a**2*x**2) > 1), (-a**2*sqrt(c)*x**
5/(4*sqrt(-a**2*x**2 + 1)) + 3*sqrt(c)*x**3/(8*sqrt(-a**2*x**2 + 1)) - sqrt(c)*x/(8*a**2*sqrt(-a**2*x**2 + 1))
 + sqrt(c)*asin(a*x)/(8*a**3), True)) + 2*a*c*Piecewise((0, Eq(c, 0)), (sqrt(c)*x**2/2, Eq(a**2, 0)), (-(-a**2
*c*x**2 + c)**(3/2)/(3*a**2*c), True)) + c*Piecewise((I*a**2*sqrt(c)*x**3/(2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*
x/(2*sqrt(a**2*x**2 - 1)) - I*sqrt(c)*acosh(a*x)/(2*a), Abs(a**2*x**2) > 1), (sqrt(c)*x*sqrt(-a**2*x**2 + 1)/2
 + sqrt(c)*asin(a*x)/(2*a), True))

________________________________________________________________________________________

Giac [A]  time = 1.13948, size = 115, normalized size = 1.07 \begin{align*} \frac{1}{24} \, \sqrt{-a^{2} c x^{2} + c}{\left ({\left (2 \,{\left (3 \, a^{2} c x + 8 \, a c\right )} x + 9 \, c\right )} x - \frac{16 \, c}{a}\right )} - \frac{5 \, c^{2} \log \left ({\left | -\sqrt{-a^{2} c} x + \sqrt{-a^{2} c x^{2} + c} \right |}\right )}{8 \, \sqrt{-c}{\left | a \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

1/24*sqrt(-a^2*c*x^2 + c)*((2*(3*a^2*c*x + 8*a*c)*x + 9*c)*x - 16*c/a) - 5/8*c^2*log(abs(-sqrt(-a^2*c)*x + sqr
t(-a^2*c*x^2 + c)))/(sqrt(-c)*abs(a))