3.51 \(\int \frac{a+b \sinh ^{-1}(c x)}{(f+g x) \sqrt{d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=325 \[ \frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-\frac{g e^{\sinh ^{-1}(c x)}}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}-\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}+\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac{g e^{\sinh ^{-1}(c x)}}{c f-\sqrt{c^2 f^2+g^2}}+1\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}-\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}+1\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}} \]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2])])/(Sqrt[c^2*f^2
 + g^2]*Sqrt[d + c^2*d*x^2]) - (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f + Sqrt[
c^2*f^2 + g^2])])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2]) + (b*Sqrt[1 + c^2*x^2]*PolyLog[2, -((E^ArcSinh[c*x
]*g)/(c*f - Sqrt[c^2*f^2 + g^2]))])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]*PolyLog[2
, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2]))])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.548057, antiderivative size = 325, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.233, Rules used = {5835, 5831, 3322, 2264, 2190, 2279, 2391} \[ \frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-\frac{g e^{\sinh ^{-1}(c x)}}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}-\frac{b \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}+\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac{g e^{\sinh ^{-1}(c x)}}{c f-\sqrt{c^2 f^2+g^2}}+1\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}}-\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}+1\right )}{\sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])/((f + g*x)*Sqrt[d + c^2*d*x^2]),x]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2])])/(Sqrt[c^2*f^2
 + g^2]*Sqrt[d + c^2*d*x^2]) - (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f + Sqrt[
c^2*f^2 + g^2])])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2]) + (b*Sqrt[1 + c^2*x^2]*PolyLog[2, -((E^ArcSinh[c*x
]*g)/(c*f - Sqrt[c^2*f^2 + g^2]))])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]*PolyLog[2
, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2]))])/(Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2])

Rule 5835

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 + c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a +
 b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p
 - 1/2] &&  !GtQ[d, 0]

Rule 5831

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
 :> Dist[1/(c^(m + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*(c*f + g*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{
a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])

Rule 3322

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[((c + d*x)^m*E^(-(I*e) + f*fz*x))/(-(I*b) + 2*a*E^(-(I*e) + f*fz*x) + I*b*E^(2*(-(I*e) + f*fz*x))), x], x]
 /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{a+b \sinh ^{-1}(c x)}{(f+g x) \sqrt{d+c^2 d x^2}} \, dx &=\frac{\sqrt{1+c^2 x^2} \int \frac{a+b \sinh ^{-1}(c x)}{(f+g x) \sqrt{1+c^2 x^2}} \, dx}{\sqrt{d+c^2 d x^2}}\\ &=\frac{\sqrt{1+c^2 x^2} \operatorname{Subst}\left (\int \frac{a+b x}{c f+g \sinh (x)} \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{d+c^2 d x^2}}\\ &=\frac{\left (2 \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^x (a+b x)}{2 c e^x f-g+e^{2 x} g} \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{d+c^2 d x^2}}\\ &=\frac{\left (2 g \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^x (a+b x)}{2 c f+2 e^x g-2 \sqrt{c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\left (2 g \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^x (a+b x)}{2 c f+2 e^x g+2 \sqrt{c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}\\ &=\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f+\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+\frac{2 e^x g}{2 c f-2 \sqrt{c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}+\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+\frac{2 e^x g}{2 c f+2 \sqrt{c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}\\ &=\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f+\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{2 g x}{2 c f-2 \sqrt{c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}+\frac{\left (b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{2 g x}{2 c f+2 \sqrt{c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}\\ &=\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac{e^{\sinh ^{-1}(c x)} g}{c f+\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}+\frac{b \sqrt{1+c^2 x^2} \text{Li}_2\left (-\frac{e^{\sinh ^{-1}(c x)} g}{c f-\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}-\frac{b \sqrt{1+c^2 x^2} \text{Li}_2\left (-\frac{e^{\sinh ^{-1}(c x)} g}{c f+\sqrt{c^2 f^2+g^2}}\right )}{\sqrt{c^2 f^2+g^2} \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.623303, size = 256, normalized size = 0.79 \[ \frac{\frac{b \sqrt{c^2 x^2+1} \left (\text{PolyLog}\left (2,\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}-c f}\right )-\text{PolyLog}\left (2,-\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}\right )+\sinh ^{-1}(c x) \left (\log \left (\frac{g e^{\sinh ^{-1}(c x)}}{c f-\sqrt{c^2 f^2+g^2}}+1\right )-\log \left (\frac{g e^{\sinh ^{-1}(c x)}}{\sqrt{c^2 f^2+g^2}+c f}+1\right )\right )\right )}{\sqrt{c^2 d x^2+d}}-\frac{a \log \left (\sqrt{d} \sqrt{c^2 d x^2+d} \sqrt{c^2 f^2+g^2}+d \left (g-c^2 f x\right )\right )}{\sqrt{d}}+\frac{a \log (f+g x)}{\sqrt{d}}}{\sqrt{c^2 f^2+g^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])/((f + g*x)*Sqrt[d + c^2*d*x^2]),x]

[Out]

((a*Log[f + g*x])/Sqrt[d] - (a*Log[d*(g - c^2*f*x) + Sqrt[d]*Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^2]])/Sqrt[d]
 + (b*Sqrt[1 + c^2*x^2]*(ArcSinh[c*x]*(Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2])] - Log[1 + (E^Ar
cSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2])]) + PolyLog[2, (E^ArcSinh[c*x]*g)/(-(c*f) + Sqrt[c^2*f^2 + g^2])] -
PolyLog[2, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2]))]))/Sqrt[d + c^2*d*x^2])/Sqrt[c^2*f^2 + g^2]

________________________________________________________________________________________

Maple [B]  time = 0.132, size = 678, normalized size = 2.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))/(g*x+f)/(c^2*d*x^2+d)^(1/2),x)

[Out]

-a/g/(d*(c^2*f^2+g^2)/g^2)^(1/2)*ln((2*d*(c^2*f^2+g^2)/g^2-2*c^2*d*f/g*(x+f/g)+2*(d*(c^2*f^2+g^2)/g^2)^(1/2)*(
(x+f/g)^2*c^2*d-2*c^2*d*f/g*(x+f/g)+d*(c^2*f^2+g^2)/g^2)^(1/2))/(x+f/g))+b*(d*(c^2*x^2+1))^(1/2)*(c^2*f^2+g^2)
^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^4*f^2*x^2+c^2*g^2*x^2+c^2*f^2+g^2)*arcsinh(c*x)*ln((-(c*x+(c^2*x^2+1)^(1/2))*g-c
*f+(c^2*f^2+g^2)^(1/2))/(-c*f+(c^2*f^2+g^2)^(1/2)))-b*(d*(c^2*x^2+1))^(1/2)*(c^2*f^2+g^2)^(1/2)*(c^2*x^2+1)^(1
/2)/d/(c^4*f^2*x^2+c^2*g^2*x^2+c^2*f^2+g^2)*arcsinh(c*x)*ln(((c*x+(c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2+g^2)^(1/2)
)/(c*f+(c^2*f^2+g^2)^(1/2)))+b*(d*(c^2*x^2+1))^(1/2)*(c^2*f^2+g^2)^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^4*f^2*x^2+c^2*
g^2*x^2+c^2*f^2+g^2)*dilog((-(c*x+(c^2*x^2+1)^(1/2))*g-c*f+(c^2*f^2+g^2)^(1/2))/(-c*f+(c^2*f^2+g^2)^(1/2)))-b*
(d*(c^2*x^2+1))^(1/2)*(c^2*f^2+g^2)^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^4*f^2*x^2+c^2*g^2*x^2+c^2*f^2+g^2)*dilog(((c*
x+(c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2+g^2)^(1/2))/(c*f+(c^2*f^2+g^2)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arsinh}\left (c x\right ) + a}{\sqrt{c^{2} d x^{2} + d}{\left (g x + f\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(c*x) + a)/(sqrt(c^2*d*x^2 + d)*(g*x + f)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} d x^{2} + d}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}}{c^{2} d g x^{3} + c^{2} d f x^{2} + d g x + d f}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/(c^2*d*g*x^3 + c^2*d*f*x^2 + d*g*x + d*f), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{asinh}{\left (c x \right )}}{\sqrt{d \left (c^{2} x^{2} + 1\right )} \left (f + g x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))/(g*x+f)/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))/(sqrt(d*(c**2*x**2 + 1))*(f + g*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arsinh}\left (c x\right ) + a}{\sqrt{c^{2} d x^{2} + d}{\left (g x + f\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)/(sqrt(c^2*d*x^2 + d)*(g*x + f)), x)