3.50 \(\int \frac{a+b \sinh ^{-1}(c x)}{\sqrt{d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=47 \[ \frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt{c^2 d x^2+d}} \]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(2*b*c*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0567424, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {5677, 5675} \[ \frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(2*b*c*Sqrt[d + c^2*d*x^2])

Rule 5677

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/S
qrt[d + e*x^2], Int[(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e,
 c^2*d] &&  !GtQ[d, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rubi steps

\begin{align*} \int \frac{a+b \sinh ^{-1}(c x)}{\sqrt{d+c^2 d x^2}} \, dx &=\frac{\sqrt{1+c^2 x^2} \int \frac{a+b \sinh ^{-1}(c x)}{\sqrt{1+c^2 x^2}} \, dx}{\sqrt{d+c^2 d x^2}}\\ &=\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.036389, size = 48, normalized size = 1.02 \[ \frac{\sqrt{c^2 x^2+1} \sinh ^{-1}(c x) \left (2 a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c*x])/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[1 + c^2*x^2]*ArcSinh[c*x]*(2*a + b*ArcSinh[c*x]))/(2*c*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 77, normalized size = 1.6 \begin{align*}{a\ln \left ({{c}^{2}dx{\frac{1}{\sqrt{{c}^{2}d}}}}+\sqrt{{c}^{2}d{x}^{2}+d} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{b \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{2\,cd}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

[Out]

a*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+1/2*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c/
d*arcsinh(c*x)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b \operatorname{arsinh}\left (c x\right ) + a}{\sqrt{c^{2} d x^{2} + d}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b*arcsinh(c*x) + a)/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{asinh}{\left (c x \right )}}{\sqrt{d \left (c^{2} x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arsinh}\left (c x\right ) + a}{\sqrt{c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)/sqrt(c^2*d*x^2 + d), x)