3.20 \(\int \frac{1}{(b \text{csch}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=118 \[ -\frac{10 i \sqrt{i \sinh (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (i c+i d x-\frac{\pi }{2}\right ),2\right ) \sqrt{b \text{csch}(c+d x)}}{21 b^4 d}-\frac{10 \cosh (c+d x)}{21 b^3 d \sqrt{b \text{csch}(c+d x)}}+\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}} \]

[Out]

(2*Cosh[c + d*x])/(7*b*d*(b*Csch[c + d*x])^(5/2)) - (10*Cosh[c + d*x])/(21*b^3*d*Sqrt[b*Csch[c + d*x]]) - (((1
0*I)/21)*Sqrt[b*Csch[c + d*x]]*EllipticF[(I*c - Pi/2 + I*d*x)/2, 2]*Sqrt[I*Sinh[c + d*x]])/(b^4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0564636, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3769, 3771, 2641} \[ -\frac{10 \cosh (c+d x)}{21 b^3 d \sqrt{b \text{csch}(c+d x)}}-\frac{10 i \sqrt{i \sinh (c+d x)} F\left (\left .\frac{1}{2} \left (i c+i d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{b \text{csch}(c+d x)}}{21 b^4 d}+\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Csch[c + d*x])^(-7/2),x]

[Out]

(2*Cosh[c + d*x])/(7*b*d*(b*Csch[c + d*x])^(5/2)) - (10*Cosh[c + d*x])/(21*b^3*d*Sqrt[b*Csch[c + d*x]]) - (((1
0*I)/21)*Sqrt[b*Csch[c + d*x]]*EllipticF[(I*c - Pi/2 + I*d*x)/2, 2]*Sqrt[I*Sinh[c + d*x]])/(b^4*d)

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{(b \text{csch}(c+d x))^{7/2}} \, dx &=\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}}-\frac{5 \int \frac{1}{(b \text{csch}(c+d x))^{3/2}} \, dx}{7 b^2}\\ &=\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}}-\frac{10 \cosh (c+d x)}{21 b^3 d \sqrt{b \text{csch}(c+d x)}}+\frac{5 \int \sqrt{b \text{csch}(c+d x)} \, dx}{21 b^4}\\ &=\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}}-\frac{10 \cosh (c+d x)}{21 b^3 d \sqrt{b \text{csch}(c+d x)}}+\frac{\left (5 \sqrt{b \text{csch}(c+d x)} \sqrt{i \sinh (c+d x)}\right ) \int \frac{1}{\sqrt{i \sinh (c+d x)}} \, dx}{21 b^4}\\ &=\frac{2 \cosh (c+d x)}{7 b d (b \text{csch}(c+d x))^{5/2}}-\frac{10 \cosh (c+d x)}{21 b^3 d \sqrt{b \text{csch}(c+d x)}}-\frac{10 i \sqrt{b \text{csch}(c+d x)} F\left (\left .\frac{1}{2} \left (i c-\frac{\pi }{2}+i d x\right )\right |2\right ) \sqrt{i \sinh (c+d x)}}{21 b^4 d}\\ \end{align*}

Mathematica [A]  time = 0.156832, size = 80, normalized size = 0.68 \[ \frac{\sqrt{b \text{csch}(c+d x)} \left (40 i \sqrt{i \sinh (c+d x)} \text{EllipticF}\left (\frac{1}{4} (-2 i c-2 i d x+\pi ),2\right )-26 \sinh (2 (c+d x))+3 \sinh (4 (c+d x))\right )}{84 b^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Csch[c + d*x])^(-7/2),x]

[Out]

(Sqrt[b*Csch[c + d*x]]*((40*I)*EllipticF[((-2*I)*c + Pi - (2*I)*d*x)/4, 2]*Sqrt[I*Sinh[c + d*x]] - 26*Sinh[2*(
c + d*x)] + 3*Sinh[4*(c + d*x)]))/(84*b^4*d)

________________________________________________________________________________________

Maple [F]  time = 0.073, size = 0, normalized size = 0. \begin{align*} \int \left ( b{\rm csch} \left (dx+c\right ) \right ) ^{-{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*csch(d*x+c))^(7/2),x)

[Out]

int(1/(b*csch(d*x+c))^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \operatorname{csch}\left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*csch(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*csch(d*x + c))^(-7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \operatorname{csch}\left (d x + c\right )}}{b^{4} \operatorname{csch}\left (d x + c\right )^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*csch(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*csch(d*x + c))/(b^4*csch(d*x + c)^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \operatorname{csch}{\left (c + d x \right )}\right )^{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*csch(d*x+c))**(7/2),x)

[Out]

Integral((b*csch(c + d*x))**(-7/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \operatorname{csch}\left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*csch(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*csch(d*x + c))^(-7/2), x)