3.32 \(\int (b \sinh (c+d x))^{2/3} \, dx\)

Optimal. Leaf size=60 \[ \frac{3 \cosh (c+d x) (b \sinh (c+d x))^{5/3} \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{11}{6};-\sinh ^2(c+d x)\right )}{5 b d \sqrt{\cosh ^2(c+d x)}} \]

[Out]

(3*Cosh[c + d*x]*Hypergeometric2F1[1/2, 5/6, 11/6, -Sinh[c + d*x]^2]*(b*Sinh[c + d*x])^(5/3))/(5*b*d*Sqrt[Cosh
[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.015458, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {2643} \[ \frac{3 \cosh (c+d x) (b \sinh (c+d x))^{5/3} \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{11}{6};-\sinh ^2(c+d x)\right )}{5 b d \sqrt{\cosh ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Sinh[c + d*x])^(2/3),x]

[Out]

(3*Cosh[c + d*x]*Hypergeometric2F1[1/2, 5/6, 11/6, -Sinh[c + d*x]^2]*(b*Sinh[c + d*x])^(5/3))/(5*b*d*Sqrt[Cosh
[c + d*x]^2])

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int (b \sinh (c+d x))^{2/3} \, dx &=\frac{3 \cosh (c+d x) \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{11}{6};-\sinh ^2(c+d x)\right ) (b \sinh (c+d x))^{5/3}}{5 b d \sqrt{\cosh ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0357521, size = 57, normalized size = 0.95 \[ \frac{3 \sqrt{\cosh ^2(c+d x)} \tanh (c+d x) (b \sinh (c+d x))^{2/3} \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{11}{6};-\sinh ^2(c+d x)\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Sinh[c + d*x])^(2/3),x]

[Out]

(3*Sqrt[Cosh[c + d*x]^2]*Hypergeometric2F1[1/2, 5/6, 11/6, -Sinh[c + d*x]^2]*(b*Sinh[c + d*x])^(2/3)*Tanh[c +
d*x])/(5*d)

________________________________________________________________________________________

Maple [F]  time = 0.073, size = 0, normalized size = 0. \begin{align*} \int \left ( b\sinh \left ( dx+c \right ) \right ) ^{{\frac{2}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sinh(d*x+c))^(2/3),x)

[Out]

int((b*sinh(d*x+c))^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sinh \left (d x + c\right )\right )^{\frac{2}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sinh(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((b*sinh(d*x + c))^(2/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (b \sinh \left (d x + c\right )\right )^{\frac{2}{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sinh(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((b*sinh(d*x + c))^(2/3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sinh{\left (c + d x \right )}\right )^{\frac{2}{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sinh(d*x+c))**(2/3),x)

[Out]

Integral((b*sinh(c + d*x))**(2/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sinh \left (d x + c\right )\right )^{\frac{2}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sinh(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((b*sinh(d*x + c))^(2/3), x)