3.118 \(\int \frac{(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt{1+a^2+2 a b x+b^2 x^2}} \, dx\)

Optimal. Leaf size=187 \[ \frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}-\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}+\frac{\sqrt{(a+b x)^2+1}}{2 b}+\frac{(a+b x) \sqrt{(a+b x)^2+1} \cot ^{-1}(a+b x)}{2 b}+\frac{i \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right ) \cot ^{-1}(a+b x)}{b} \]

[Out]

Sqrt[1 + (a + b*x)^2]/(2*b) + ((a + b*x)*Sqrt[1 + (a + b*x)^2]*ArcCot[a + b*x])/(2*b) + (I*ArcCot[a + b*x]*Arc
Tan[Sqrt[1 + I*(a + b*x)]/Sqrt[1 - I*(a + b*x)]])/b + ((I/2)*PolyLog[2, ((-I)*Sqrt[1 + I*(a + b*x)])/Sqrt[1 -
I*(a + b*x)]])/b - ((I/2)*PolyLog[2, (I*Sqrt[1 + I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b

________________________________________________________________________________________

Rubi [A]  time = 0.2229, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114, Rules used = {5058, 4953, 261, 4887} \[ \frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}-\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}+\frac{\sqrt{(a+b x)^2+1}}{2 b}+\frac{(a+b x) \sqrt{(a+b x)^2+1} \cot ^{-1}(a+b x)}{2 b}+\frac{i \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right ) \cot ^{-1}(a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^2*ArcCot[a + b*x])/Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

Sqrt[1 + (a + b*x)^2]/(2*b) + ((a + b*x)*Sqrt[1 + (a + b*x)^2]*ArcCot[a + b*x])/(2*b) + (I*ArcCot[a + b*x]*Arc
Tan[Sqrt[1 + I*(a + b*x)]/Sqrt[1 - I*(a + b*x)]])/b + ((I/2)*PolyLog[2, ((-I)*Sqrt[1 + I*(a + b*x)])/Sqrt[1 -
I*(a + b*x)]])/b - ((I/2)*PolyLog[2, (I*Sqrt[1 + I*(a + b*x)])/Sqrt[1 - I*(a + b*x)]])/b

Rule 5058

Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_
)^2)^(q_.), x_Symbol] :> Dist[1/d, Subst[Int[((d*e - c*f)/d + (f*x)/d)^m*(C/d^2 + (C*x^2)/d^2)^q*(a + b*ArcCot
[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0]
 && EqQ[2*c*C - B*d, 0]

Rule 4953

Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcCot[c*x])^p)/(c^2*d*m), x] + (Dist[(b*f*p)/(c*m), Int[((f*x)^(m - 1
)*(a + b*ArcCot[c*x])^(p - 1))/Sqrt[d + e*x^2], x], x] - Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m - 2)*(a + b
*ArcCot[c*x])^p)/Sqrt[d + e*x^2], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && GtQ
[m, 1]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 4887

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*I*(a + b*ArcCot[c*x])*
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x] + (-Simp[(I*b*PolyLog[2, -((I*Sqrt[1 + I*c*x])/Sqrt[1
 - I*c*x])])/(c*Sqrt[d]), x] + Simp[(I*b*PolyLog[2, (I*Sqrt[1 + I*c*x])/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x]) /;
FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rubi steps

\begin{align*} \int \frac{(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt{1+a^2+2 a b x+b^2 x^2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2 \cot ^{-1}(x)}{\sqrt{1+x^2}} \, dx,x,a+b x\right )}{b}\\ &=\frac{(a+b x) \sqrt{1+(a+b x)^2} \cot ^{-1}(a+b x)}{2 b}+\frac{\operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2}} \, dx,x,a+b x\right )}{2 b}-\frac{\operatorname{Subst}\left (\int \frac{\cot ^{-1}(x)}{\sqrt{1+x^2}} \, dx,x,a+b x\right )}{2 b}\\ &=\frac{\sqrt{1+(a+b x)^2}}{2 b}+\frac{(a+b x) \sqrt{1+(a+b x)^2} \cot ^{-1}(a+b x)}{2 b}+\frac{i \cot ^{-1}(a+b x) \tan ^{-1}\left (\frac{\sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{b}+\frac{i \text{Li}_2\left (-\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}-\frac{i \text{Li}_2\left (\frac{i \sqrt{1+i (a+b x)}}{\sqrt{1-i (a+b x)}}\right )}{2 b}\\ \end{align*}

Mathematica [A]  time = 1.4439, size = 202, normalized size = 1.08 \[ -\frac{\sqrt{(a+b x)^2 \left (\frac{1}{(a+b x)^2}+1\right )} \left (-4 i \text{PolyLog}\left (2,-e^{i \cot ^{-1}(a+b x)}\right )+4 i \text{PolyLog}\left (2,e^{i \cot ^{-1}(a+b x)}\right )-2 \cot \left (\frac{1}{2} \cot ^{-1}(a+b x)\right )-4 \cot ^{-1}(a+b x) \log \left (1-e^{i \cot ^{-1}(a+b x)}\right )+4 \cot ^{-1}(a+b x) \log \left (1+e^{i \cot ^{-1}(a+b x)}\right )-2 \tan \left (\frac{1}{2} \cot ^{-1}(a+b x)\right )-\cot ^{-1}(a+b x) \csc ^2\left (\frac{1}{2} \cot ^{-1}(a+b x)\right )+\cot ^{-1}(a+b x) \sec ^2\left (\frac{1}{2} \cot ^{-1}(a+b x)\right )\right )}{8 b (a+b x) \sqrt{\frac{1}{(a+b x)^2}+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + b*x)^2*ArcCot[a + b*x])/Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

-(Sqrt[(a + b*x)^2*(1 + (a + b*x)^(-2))]*(-2*Cot[ArcCot[a + b*x]/2] - ArcCot[a + b*x]*Csc[ArcCot[a + b*x]/2]^2
 - 4*ArcCot[a + b*x]*Log[1 - E^(I*ArcCot[a + b*x])] + 4*ArcCot[a + b*x]*Log[1 + E^(I*ArcCot[a + b*x])] - (4*I)
*PolyLog[2, -E^(I*ArcCot[a + b*x])] + (4*I)*PolyLog[2, E^(I*ArcCot[a + b*x])] + ArcCot[a + b*x]*Sec[ArcCot[a +
 b*x]/2]^2 - 2*Tan[ArcCot[a + b*x]/2]))/(8*b*(a + b*x)*Sqrt[1 + (a + b*x)^(-2)])

________________________________________________________________________________________

Maple [A]  time = 0.642, size = 167, normalized size = 0.9 \begin{align*}{\frac{{\rm arccot} \left (bx+a\right )xb+{\rm arccot} \left (bx+a\right )a+1}{2\,b}\sqrt{{b}^{2}{x}^{2}+2\,xab+{a}^{2}+1}}-{\frac{{\rm arccot} \left (bx+a\right )}{2\,b}\ln \left ( 1+{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }+{\frac{{\rm arccot} \left (bx+a\right )}{2\,b}\ln \left ( 1-{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }+{\frac{{\frac{i}{2}}}{b}{\it polylog} \left ( 2,-{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) }-{\frac{{\frac{i}{2}}}{b}{\it polylog} \left ( 2,{(i+a+bx){\frac{1}{\sqrt{1+ \left ( bx+a \right ) ^{2}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2*arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x)

[Out]

1/2*(arccot(b*x+a)*x*b+arccot(b*x+a)*a+1)*(b^2*x^2+2*a*b*x+a^2+1)^(1/2)/b-1/2/b*arccot(b*x+a)*ln(1+(I+a+b*x)/(
1+(b*x+a)^2)^(1/2))+1/2/b*arccot(b*x+a)*ln(1-(I+a+b*x)/(1+(b*x+a)^2)^(1/2))+1/2*I/b*polylog(2,-(I+a+b*x)/(1+(b
*x+a)^2)^(1/2))-1/2*I/b*polylog(2,(I+a+b*x)/(1+(b*x+a)^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \operatorname{arccot}\left (b x + a\right )}{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*x^2 + 2*a*b*x + a^2)*arccot(b*x + a)/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right )^{2} \operatorname{acot}{\left (a + b x \right )}}{\sqrt{a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2*acot(b*x+a)/(b**2*x**2+2*a*b*x+a**2+1)**(1/2),x)

[Out]

Integral((a + b*x)**2*acot(a + b*x)/sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x + a\right )}^{2} \operatorname{arccot}\left (b x + a\right )}{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccot(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)^2*arccot(b*x + a)/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1), x)