3.51 \(\int \frac{(f+g x) (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac{\left (c^2 f x+g\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{1-c^2 x^2} (c f+g) \log (1-c x)}{2 c^2 d \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{1-c^2 x^2} (c f-g) \log (c x+1)}{2 c^2 d \sqrt{d-c^2 d x^2}} \]

[Out]

((g + c^2*f*x)*(a + b*ArcSin[c*x]))/(c^2*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f + g)*Sqrt[1 - c^2*x^2]*Log[1 - c*x])
/(2*c^2*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f - g)*Sqrt[1 - c^2*x^2]*Log[1 + c*x])/(2*c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.186609, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {4777, 637, 4761, 12, 633, 31} \[ \frac{\left (c^2 f x+g\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{1-c^2 x^2} (c f+g) \log (1-c x)}{2 c^2 d \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{1-c^2 x^2} (c f-g) \log (c x+1)}{2 c^2 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

((g + c^2*f*x)*(a + b*ArcSin[c*x]))/(c^2*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f + g)*Sqrt[1 - c^2*x^2]*Log[1 - c*x])
/(2*c^2*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f - g)*Sqrt[1 - c^2*x^2]*Log[1 + c*x])/(2*c^2*d*Sqrt[d - c^2*d*x^2])

Rule 4777

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 - c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a +
b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ
[p - 1/2] &&  !GtQ[d, 0]

Rule 637

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(a*e) + c*d*x)/(a*c*Sqrt[a + c*x^2]),
 x] /; FreeQ[{a, c, d, e}, x]

Rule 4761

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With
[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c, Int[Dist[1/Sqrt[1 - c^
2*x^2], u, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[p + 1/2,
0] && GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 633

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[e/2 + (c*d)/(2*q),
Int[1/(-q + c*x), x], x] + Dist[e/2 - (c*d)/(2*q), Int[1/(q + c*x), x], x]] /; FreeQ[{a, c, d, e}, x] && NiceS
qrtQ[-(a*c)]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(f+g x) \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac{\sqrt{1-c^2 x^2} \int \frac{(f+g x) \left (a+b \sin ^{-1}(c x)\right )}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d \sqrt{d-c^2 d x^2}}\\ &=\frac{\left (g+c^2 f x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b c \sqrt{1-c^2 x^2}\right ) \int \frac{g+c^2 f x}{c^2 \left (1-c^2 x^2\right )} \, dx}{d \sqrt{d-c^2 d x^2}}\\ &=\frac{\left (g+c^2 f x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int \frac{g+c^2 f x}{1-c^2 x^2} \, dx}{c d \sqrt{d-c^2 d x^2}}\\ &=\frac{\left (g+c^2 f x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b (c f-g) \sqrt{1-c^2 x^2}\right ) \int \frac{1}{-c-c^2 x} \, dx}{2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b (c f+g) \sqrt{1-c^2 x^2}\right ) \int \frac{1}{c-c^2 x} \, dx}{2 d \sqrt{d-c^2 d x^2}}\\ &=\frac{\left (g+c^2 f x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt{d-c^2 d x^2}}+\frac{b (c f+g) \sqrt{1-c^2 x^2} \log (1-c x)}{2 c^2 d \sqrt{d-c^2 d x^2}}+\frac{b (c f-g) \sqrt{1-c^2 x^2} \log (1+c x)}{2 c^2 d \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.518545, size = 135, normalized size = 0.94 \[ \frac{\sqrt{1-c^2 x^2} \left ((c f-g) \left (2 b \log \left (\sin \left (\frac{1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )-\cot \left (\frac{1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right ) \left (a+b \sin ^{-1}(c x)\right )\right )+(c f+g) \left (\tan \left (\frac{1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right ) \left (a+b \sin ^{-1}(c x)\right )+2 b \log \left (\cos \left (\frac{1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )\right )\right )}{2 c^2 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(Sqrt[1 - c^2*x^2]*((c*f - g)*(-((a + b*ArcSin[c*x])*Cot[(Pi + 2*ArcSin[c*x])/4]) + 2*b*Log[Sin[(Pi + 2*ArcSin
[c*x])/4]]) + (c*f + g)*(2*b*Log[Cos[(Pi + 2*ArcSin[c*x])/4]] + (a + b*ArcSin[c*x])*Tan[(Pi + 2*ArcSin[c*x])/4
])))/(2*c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C]  time = 0.244, size = 443, normalized size = 3.1 \begin{align*}{\frac{ag}{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}+{\frac{afx}{d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}+{\frac{ibf\arcsin \left ( cx \right ) }{c{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{bx\arcsin \left ( cx \right ) f}{{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{b\arcsin \left ( cx \right ) g}{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{bf}{c{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}+i \right ) }+{\frac{bg}{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}+i \right ) }-{\frac{bf}{c{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}-i \right ) }-{\frac{bg}{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}-i \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

a*g/c^2/d/(-c^2*d*x^2+d)^(1/2)+a*f/d*x/(-c^2*d*x^2+d)^(1/2)+I*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d^
2/(c^2*x^2-1)*f*arcsin(c*x)-b*(-d*(c^2*x^2-1))^(1/2)/d^2/(c^2*x^2-1)*arcsin(c*x)*x*f-b*(-d*(c^2*x^2-1))^(1/2)/
c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*g-b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)/c
/d^2/(c^2*x^2-1)*f+b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)/c^2/d^2/(c^2*x^2
-1)*g-b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)*f-b*(-c^2*x
^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)*g

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{b c f \sqrt{\frac{1}{c^{4} d}} \log \left (x^{2} - \frac{1}{c^{2}}\right )}{2 \, d} + \frac{b f x \arcsin \left (c x\right )}{\sqrt{-c^{2} d x^{2} + d} d} + \frac{a f x}{\sqrt{-c^{2} d x^{2} + d} d} + \frac{\frac{1}{2} \,{\left (\sqrt{c x + 1} \sqrt{-c x + 1} c^{3} d^{2}{\left (\frac{2 \, x}{c^{2} d^{2}} - \frac{\log \left (c x + 1\right )}{c^{3} d^{2}} + \frac{\log \left (c x - 1\right )}{c^{3} d^{2}}\right )} + 2 \, \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right )\right )} b g}{\sqrt{c x + 1} \sqrt{-c x + 1} c^{2} d^{\frac{3}{2}}} + \frac{a g}{\sqrt{-c^{2} d x^{2} + d} c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

-1/2*b*c*f*sqrt(1/(c^4*d))*log(x^2 - 1/c^2)/d + b*f*x*arcsin(c*x)/(sqrt(-c^2*d*x^2 + d)*d) + a*f*x/(sqrt(-c^2*
d*x^2 + d)*d) + (sqrt(c*x + 1)*sqrt(-c*x + 1)*c^3*d^2*integrate(x^2/(c^4*d^2*x^4 - c^2*d^2*x^2 + (c^2*d^2*x^2
- d^2)*e^(log(c*x + 1) + log(-c*x + 1))), x) + arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*b*g/(sqrt(c*x + 1)*
sqrt(-c*x + 1)*c^2*d^(3/2)) + a*g/(sqrt(-c^2*d*x^2 + d)*c^2*d)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} d x^{2} + d}{\left (a g x + a f +{\left (b g x + b f\right )} \arcsin \left (c x\right )\right )}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(a*g*x + a*f + (b*g*x + b*f)*arcsin(c*x))/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{asin}{\left (c x \right )}\right ) \left (f + g x\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral((a + b*asin(c*x))*(f + g*x)/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (g x + f\right )}{\left (b \arcsin \left (c x\right ) + a\right )}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((g*x + f)*(b*arcsin(c*x) + a)/(-c^2*d*x^2 + d)^(3/2), x)