3.296 \(\int \frac{(a+b \sin ^{-1}(c+d x))^2}{(c e+d e x)^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ -\frac{16 b^2 (e (c+d x))^{3/2} \text{HypergeometricPFQ}\left (\left \{\frac{3}{4},\frac{3}{4},1\right \},\left \{\frac{5}{4},\frac{7}{4}\right \},(c+d x)^2\right )}{3 d e^3}+\frac{8 b \sqrt{e (c+d x)} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},(c+d x)^2\right ) \left (a+b \sin ^{-1}(c+d x)\right )}{d e^2}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e \sqrt{e (c+d x)}} \]

[Out]

(-2*(a + b*ArcSin[c + d*x])^2)/(d*e*Sqrt[e*(c + d*x)]) + (8*b*Sqrt[e*(c + d*x)]*(a + b*ArcSin[c + d*x])*Hyperg
eometric2F1[1/4, 1/2, 5/4, (c + d*x)^2])/(d*e^2) - (16*b^2*(e*(c + d*x))^(3/2)*HypergeometricPFQ[{3/4, 3/4, 1}
, {5/4, 7/4}, (c + d*x)^2])/(3*d*e^3)

________________________________________________________________________________________

Rubi [A]  time = 0.201211, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4805, 4627, 4711} \[ -\frac{16 b^2 (e (c+d x))^{3/2} \, _3F_2\left (\frac{3}{4},\frac{3}{4},1;\frac{5}{4},\frac{7}{4};(c+d x)^2\right )}{3 d e^3}+\frac{8 b \sqrt{e (c+d x)} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};(c+d x)^2\right ) \left (a+b \sin ^{-1}(c+d x)\right )}{d e^2}-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e \sqrt{e (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^2/(c*e + d*e*x)^(3/2),x]

[Out]

(-2*(a + b*ArcSin[c + d*x])^2)/(d*e*Sqrt[e*(c + d*x)]) + (8*b*Sqrt[e*(c + d*x)]*(a + b*ArcSin[c + d*x])*Hyperg
eometric2F1[1/4, 1/2, 5/4, (c + d*x)^2])/(d*e^2) - (16*b^2*(e*(c + d*x))^(3/2)*HypergeometricPFQ[{3/4, 3/4, 1}
, {5/4, 7/4}, (c + d*x)^2])/(3*d*e^3)

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4711

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2])/(Sqrt[d]*f*(m + 1)), x] -
Simp[(b*c*(f*x)^(m + 2)*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2])/(Sqrt[d]*f^2*
(m + 1)*(m + 2)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] &&  !IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sin ^{-1}(c+d x)\right )^2}{(c e+d e x)^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \sin ^{-1}(x)\right )^2}{(e x)^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e \sqrt{e (c+d x)}}+\frac{(4 b) \operatorname{Subst}\left (\int \frac{a+b \sin ^{-1}(x)}{\sqrt{e x} \sqrt{1-x^2}} \, dx,x,c+d x\right )}{d e}\\ &=-\frac{2 \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e \sqrt{e (c+d x)}}+\frac{8 b \sqrt{e (c+d x)} \left (a+b \sin ^{-1}(c+d x)\right ) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};(c+d x)^2\right )}{d e^2}-\frac{16 b^2 (e (c+d x))^{3/2} \, _3F_2\left (\frac{3}{4},\frac{3}{4},1;\frac{5}{4},\frac{7}{4};(c+d x)^2\right )}{3 d e^3}\\ \end{align*}

Mathematica [A]  time = 0.0740805, size = 104, normalized size = 0.83 \[ -\frac{2 \left (8 b^2 (c+d x)^2 \text{HypergeometricPFQ}\left (\left \{\frac{3}{4},\frac{3}{4},1\right \},\left \{\frac{5}{4},\frac{7}{4}\right \},(c+d x)^2\right )+3 \left (a+b \sin ^{-1}(c+d x)\right ) \left (-4 b (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},(c+d x)^2\right )+a+b \sin ^{-1}(c+d x)\right )\right )}{3 d e \sqrt{e (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])^2/(c*e + d*e*x)^(3/2),x]

[Out]

(-2*(3*(a + b*ArcSin[c + d*x])*(a + b*ArcSin[c + d*x] - 4*b*(c + d*x)*Hypergeometric2F1[1/4, 1/2, 5/4, (c + d*
x)^2]) + 8*b^2*(c + d*x)^2*HypergeometricPFQ[{3/4, 3/4, 1}, {5/4, 7/4}, (c + d*x)^2]))/(3*d*e*Sqrt[e*(c + d*x)
])

________________________________________________________________________________________

Maple [F]  time = 0.301, size = 0, normalized size = 0. \begin{align*} \int{ \left ( a+b\arcsin \left ( dx+c \right ) \right ) ^{2} \left ( dex+ce \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(3/2),x)

[Out]

int((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} \arcsin \left (d x + c\right )^{2} + 2 \, a b \arcsin \left (d x + c\right ) + a^{2}\right )} \sqrt{d e x + c e}}{d^{2} e^{2} x^{2} + 2 \, c d e^{2} x + c^{2} e^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*arcsin(d*x + c)^2 + 2*a*b*arcsin(d*x + c) + a^2)*sqrt(d*e*x + c*e)/(d^2*e^2*x^2 + 2*c*d*e^2*x +
c^2*e^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{asin}{\left (c + d x \right )}\right )^{2}}{\left (e \left (c + d x\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))**2/(d*e*x+c*e)**(3/2),x)

[Out]

Integral((a + b*asin(c + d*x))**2/(e*(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{2}}{{\left (d e x + c e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^2/(d*e*x + c*e)^(3/2), x)