3.295 \(\int \frac{(a+b \sin ^{-1}(c+d x))^2}{\sqrt{c e+d e x}} \, dx\)

Optimal. Leaf size=128 \[ \frac{16 b^2 (e (c+d x))^{5/2} \text{HypergeometricPFQ}\left (\left \{1,\frac{5}{4},\frac{5}{4}\right \},\left \{\frac{7}{4},\frac{9}{4}\right \},(c+d x)^2\right )}{15 d e^3}-\frac{8 b (e (c+d x))^{3/2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},(c+d x)^2\right ) \left (a+b \sin ^{-1}(c+d x)\right )}{3 d e^2}+\frac{2 \sqrt{e (c+d x)} \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e} \]

[Out]

(2*Sqrt[e*(c + d*x)]*(a + b*ArcSin[c + d*x])^2)/(d*e) - (8*b*(e*(c + d*x))^(3/2)*(a + b*ArcSin[c + d*x])*Hyper
geometric2F1[1/2, 3/4, 7/4, (c + d*x)^2])/(3*d*e^2) + (16*b^2*(e*(c + d*x))^(5/2)*HypergeometricPFQ[{1, 5/4, 5
/4}, {7/4, 9/4}, (c + d*x)^2])/(15*d*e^3)

________________________________________________________________________________________

Rubi [A]  time = 0.193197, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4805, 4627, 4711} \[ \frac{16 b^2 (e (c+d x))^{5/2} \, _3F_2\left (1,\frac{5}{4},\frac{5}{4};\frac{7}{4},\frac{9}{4};(c+d x)^2\right )}{15 d e^3}-\frac{8 b (e (c+d x))^{3/2} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};(c+d x)^2\right ) \left (a+b \sin ^{-1}(c+d x)\right )}{3 d e^2}+\frac{2 \sqrt{e (c+d x)} \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^2/Sqrt[c*e + d*e*x],x]

[Out]

(2*Sqrt[e*(c + d*x)]*(a + b*ArcSin[c + d*x])^2)/(d*e) - (8*b*(e*(c + d*x))^(3/2)*(a + b*ArcSin[c + d*x])*Hyper
geometric2F1[1/2, 3/4, 7/4, (c + d*x)^2])/(3*d*e^2) + (16*b^2*(e*(c + d*x))^(5/2)*HypergeometricPFQ[{1, 5/4, 5
/4}, {7/4, 9/4}, (c + d*x)^2])/(15*d*e^3)

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4711

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2])/(Sqrt[d]*f*(m + 1)), x] -
Simp[(b*c*(f*x)^(m + 2)*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2])/(Sqrt[d]*f^2*
(m + 1)*(m + 2)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] &&  !IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sin ^{-1}(c+d x)\right )^2}{\sqrt{c e+d e x}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \sin ^{-1}(x)\right )^2}{\sqrt{e x}} \, dx,x,c+d x\right )}{d}\\ &=\frac{2 \sqrt{e (c+d x)} \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e}-\frac{(4 b) \operatorname{Subst}\left (\int \frac{\sqrt{e x} \left (a+b \sin ^{-1}(x)\right )}{\sqrt{1-x^2}} \, dx,x,c+d x\right )}{d e}\\ &=\frac{2 \sqrt{e (c+d x)} \left (a+b \sin ^{-1}(c+d x)\right )^2}{d e}-\frac{8 b (e (c+d x))^{3/2} \left (a+b \sin ^{-1}(c+d x)\right ) \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};(c+d x)^2\right )}{3 d e^2}+\frac{16 b^2 (e (c+d x))^{5/2} \, _3F_2\left (1,\frac{5}{4},\frac{5}{4};\frac{7}{4},\frac{9}{4};(c+d x)^2\right )}{15 d e^3}\\ \end{align*}

Mathematica [A]  time = 0.080617, size = 107, normalized size = 0.84 \[ \frac{2 \sqrt{e (c+d x)} \left (8 b^2 (c+d x)^2 \text{HypergeometricPFQ}\left (\left \{1,\frac{5}{4},\frac{5}{4}\right \},\left \{\frac{7}{4},\frac{9}{4}\right \},(c+d x)^2\right )+5 \left (a+b \sin ^{-1}(c+d x)\right ) \left (3 \left (a+b \sin ^{-1}(c+d x)\right )-4 b (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},(c+d x)^2\right )\right )\right )}{15 d e} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])^2/Sqrt[c*e + d*e*x],x]

[Out]

(2*Sqrt[e*(c + d*x)]*(5*(a + b*ArcSin[c + d*x])*(3*(a + b*ArcSin[c + d*x]) - 4*b*(c + d*x)*Hypergeometric2F1[1
/2, 3/4, 7/4, (c + d*x)^2]) + 8*b^2*(c + d*x)^2*HypergeometricPFQ[{1, 5/4, 5/4}, {7/4, 9/4}, (c + d*x)^2]))/(1
5*d*e)

________________________________________________________________________________________

Maple [F]  time = 0.42, size = 0, normalized size = 0. \begin{align*} \int{ \left ( a+b\arcsin \left ( dx+c \right ) \right ) ^{2}{\frac{1}{\sqrt{dex+ce}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(1/2),x)

[Out]

int((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \arcsin \left (d x + c\right )^{2} + 2 \, a b \arcsin \left (d x + c\right ) + a^{2}}{\sqrt{d e x + c e}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*arcsin(d*x + c)^2 + 2*a*b*arcsin(d*x + c) + a^2)/sqrt(d*e*x + c*e), x)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))**2/(d*e*x+c*e)**(1/2),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{2}}{\sqrt{d e x + c e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^2/sqrt(d*e*x + c*e), x)