3.4 \(\int \frac{1}{(2^{2/3}+x) \sqrt{-1-x^3}} \, dx\)

Optimal. Leaf size=156 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (\sqrt [3]{2} x+1\right )}{\sqrt{-x^3-1}}\right )}{3 \sqrt{3}}+\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}} \]

[Out]

(2*ArcTanh[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[-1 - x^3]])/(3*Sqrt[3]) + (2*2^(1/3)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[
(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3*
3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.178302, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2134, 219, 2137, 206} \[ \frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{3 \sqrt [4]{3} \sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (\sqrt [3]{2} x+1\right )}{\sqrt{-x^3-1}}\right )}{3 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[1/((2^(2/3) + x)*Sqrt[-1 - x^3]),x]

[Out]

(2*ArcTanh[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[-1 - x^3]])/(3*Sqrt[3]) + (2*2^(1/3)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[
(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3*
3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3])

Rule 2134

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2/(3*c), Int[1/Sqrt[a + b*x^3], x], x
] + Dist[1/(3*c), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 -
 4*a*d^3, 0]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2137

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*e)/d, Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + (2*d*x)/c)/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (2^{2/3}+x\right ) \sqrt{-1-x^3}} \, dx &=\frac{\int \frac{2^{2/3}-2 x}{\left (2^{2/3}+x\right ) \sqrt{-1-x^3}} \, dx}{3\ 2^{2/3}}+\frac{1}{3} \sqrt [3]{2} \int \frac{1}{\sqrt{-1-x^3}} \, dx\\ &=\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1-\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}+x}{1-\sqrt{3}+x}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1+x}{\left (1-\sqrt{3}+x\right )^2}} \sqrt{-1-x^3}}+\frac{2}{3} \operatorname{Subst}\left (\int \frac{1}{1-3 x^2} \, dx,x,\frac{1+\sqrt [3]{2} x}{\sqrt{-1-x^3}}\right )\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (1+\sqrt [3]{2} x\right )}{\sqrt{-1-x^3}}\right )}{3 \sqrt{3}}+\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1-\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}+x}{1-\sqrt{3}+x}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1+x}{\left (1-\sqrt{3}+x\right )^2}} \sqrt{-1-x^3}}\\ \end{align*}

Mathematica [C]  time = 0.109399, size = 150, normalized size = 0.96 \[ \frac{4 i \sqrt{2} \sqrt{\frac{i (x+1)}{\sqrt{3}+3 i}} \sqrt{x^2-x+1} \Pi \left (\frac{2 \sqrt{3}}{i+2 i 2^{2/3}+\sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )}{\left (1+2\ 2^{2/3}-i \sqrt{3}\right ) \sqrt{-x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((2^(2/3) + x)*Sqrt[-1 - x^3]),x]

[Out]

((4*I)*Sqrt[2]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(I + (2*I)*2^(2/3) +
 Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((1 + 2*2^(2/3
) - I*Sqrt[3])*Sqrt[-1 - x^3])

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 139, normalized size = 0.9 \begin{align*}{\frac{-{\frac{2\,i}{3}}\sqrt{3}}{{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3}+{2}^{{\frac{2}{3}}}}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{1+x}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},{\frac{i\sqrt{3}}{{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3}+{2}^{{\frac{2}{3}}}}},\sqrt{{\frac{i\sqrt{3}}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2^(2/3)+x)/(-x^3-1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((1+x)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1
/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+2^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))
*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+2^(2/3)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-x^{3} - 1}{\left (x + 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-x^3 - 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 2^{\frac{2}{3}}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2**(2/3)+x)/(-x**3-1)**(1/2),x)

[Out]

Integral(1/(sqrt(-(x + 1)*(x**2 - x + 1))*(x + 2**(2/3))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-x^{3} - 1}{\left (x + 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-x^3 - 1)*(x + 2^(2/3))), x)