3.3 \(\int \frac{1}{(2^{2/3}-x) \sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=163 \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (1-\sqrt [3]{2} x\right )}{\sqrt{x^3-1}}\right )}{3 \sqrt{3}}-\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

[Out]

(-2*ArcTanh[(Sqrt[3]*(1 - 2^(1/3)*x))/Sqrt[-1 + x^3]])/(3*Sqrt[3]) - (2*2^(1/3)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt
[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3
*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.18896, antiderivative size = 163, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2134, 219, 2137, 206} \[ -\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (1-\sqrt [3]{2} x\right )}{\sqrt{x^3-1}}\right )}{3 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[1/((2^(2/3) - x)*Sqrt[-1 + x^3]),x]

[Out]

(-2*ArcTanh[(Sqrt[3]*(1 - 2^(1/3)*x))/Sqrt[-1 + x^3]])/(3*Sqrt[3]) - (2*2^(1/3)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt
[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3
*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

Rule 2134

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2/(3*c), Int[1/Sqrt[a + b*x^3], x], x
] + Dist[1/(3*c), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 -
 4*a*d^3, 0]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2137

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*e)/d, Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + (2*d*x)/c)/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (2^{2/3}-x\right ) \sqrt{-1+x^3}} \, dx &=\frac{\int \frac{2^{2/3}+2 x}{\left (2^{2/3}-x\right ) \sqrt{-1+x^3}} \, dx}{3\ 2^{2/3}}+\frac{1}{3} \sqrt [3]{2} \int \frac{1}{\sqrt{-1+x^3}} \, dx\\ &=-\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}-\frac{2}{3} \operatorname{Subst}\left (\int \frac{1}{1-3 x^2} \, dx,x,\frac{1-\sqrt [3]{2} x}{\sqrt{-1+x^3}}\right )\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{3} \left (1-\sqrt [3]{2} x\right )}{\sqrt{-1+x^3}}\right )}{3 \sqrt{3}}-\frac{2 \sqrt [3]{2} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.142751, size = 146, normalized size = 0.9 \[ -\frac{4 i \sqrt{2} \sqrt{-\frac{i (x-1)}{\sqrt{3}+3 i}} \sqrt{x^2+x+1} \Pi \left (\frac{2 \sqrt{3}}{i+2 i 2^{2/3}+\sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )}{\left (1+2\ 2^{2/3}-i \sqrt{3}\right ) \sqrt{x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((2^(2/3) - x)*Sqrt[-1 + x^3]),x]

[Out]

((-4*I)*Sqrt[2]*Sqrt[((-I)*(-1 + x))/(3*I + Sqrt[3])]*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(I + (2*I)*2^(2
/3) + Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((1 + 2*2
^(2/3) - I*Sqrt[3])*Sqrt[-1 + x^3])

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 143, normalized size = 0.9 \begin{align*} -2\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1} \left ( -{2}^{2/3}+1 \right ) }\sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}},{\frac{3/2+i/2\sqrt{3}}{-{2}^{2/3}+1}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2^(2/3)-x)/(x^3-1)^(1/2),x)

[Out]

-2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*(
(x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)/(-2^(2/3)+1)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1
/2)))^(1/2),(3/2+1/2*I*3^(1/2))/(-2^(2/3)+1),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{\sqrt{x^{3} - 1}{\left (x - 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(x^3 - 1)*(x - 2^(2/3))), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{1}{x \sqrt{x^{3} - 1} - 2^{\frac{2}{3}} \sqrt{x^{3} - 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2**(2/3)-x)/(x**3-1)**(1/2),x)

[Out]

-Integral(1/(x*sqrt(x**3 - 1) - 2**(2/3)*sqrt(x**3 - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{1}{\sqrt{x^{3} - 1}{\left (x - 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-1/(sqrt(x^3 - 1)*(x - 2^(2/3))), x)