3.393 \(\int \frac{\sqrt{a x^{2 n}}}{\sqrt{1+x^n}} \, dx\)

Optimal. Leaf size=37 \[ \frac{x \sqrt{a x^{2 n}} \, _2F_1\left (\frac{1}{2},1+\frac{1}{n};2+\frac{1}{n};-x^n\right )}{n+1} \]

[Out]

(x*Sqrt[a*x^(2*n)]*Hypergeometric2F1[1/2, 1 + n^(-1), 2 + n^(-1), -x^n])/(1 + n)

________________________________________________________________________________________

Rubi [A]  time = 0.0122416, antiderivative size = 37, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {15, 364} \[ \frac{x \sqrt{a x^{2 n}} \, _2F_1\left (\frac{1}{2},1+\frac{1}{n};2+\frac{1}{n};-x^n\right )}{n+1} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^(2*n)]/Sqrt[1 + x^n],x]

[Out]

(x*Sqrt[a*x^(2*n)]*Hypergeometric2F1[1/2, 1 + n^(-1), 2 + n^(-1), -x^n])/(1 + n)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a x^{2 n}}}{\sqrt{1+x^n}} \, dx &=\left (x^{-n} \sqrt{a x^{2 n}}\right ) \int \frac{x^n}{\sqrt{1+x^n}} \, dx\\ &=\frac{x \sqrt{a x^{2 n}} \, _2F_1\left (\frac{1}{2},1+\frac{1}{n};2+\frac{1}{n};-x^n\right )}{1+n}\\ \end{align*}

Mathematica [A]  time = 0.0119701, size = 37, normalized size = 1. \[ \frac{x \sqrt{a x^{2 n}} \, _2F_1\left (\frac{1}{2},1+\frac{1}{n};2+\frac{1}{n};-x^n\right )}{n+1} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^(2*n)]/Sqrt[1 + x^n],x]

[Out]

(x*Sqrt[a*x^(2*n)]*Hypergeometric2F1[1/2, 1 + n^(-1), 2 + n^(-1), -x^n])/(1 + n)

________________________________________________________________________________________

Maple [F]  time = 0.069, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{a{x}^{2\,n}}{\frac{1}{\sqrt{1+{x}^{n}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^(2*n))^(1/2)/(1+x^n)^(1/2),x)

[Out]

int((a*x^(2*n))^(1/2)/(1+x^n)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{2 \, n}}}{\sqrt{x^{n} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^(2*n))/sqrt(x^n + 1), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{2 n}}}{\sqrt{x^{n} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**(2*n))**(1/2)/(1+x**n)**(1/2),x)

[Out]

Integral(sqrt(a*x**(2*n))/sqrt(x**n + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{2 \, n}}}{\sqrt{x^{n} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*x^(2*n))/sqrt(x^n + 1), x)