3.392 \(\int \frac{\sqrt{\frac{a}{x^4}}}{\sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=281 \[ \frac{\sqrt{x^3+1} x^2 \sqrt{\frac{a}{x^4}}}{x+\sqrt{3}+1}-\sqrt{x^3+1} x \sqrt{\frac{a}{x^4}}+\frac{\sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} x^2 \sqrt{\frac{a}{x^4}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} x^2 \sqrt{\frac{a}{x^4}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

-(Sqrt[a/x^4]*x*Sqrt[1 + x^3]) + (Sqrt[a/x^4]*x^2*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]
]*Sqrt[a/x^4]*x^2*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt
[3] + x)], -7 - 4*Sqrt[3]])/(2*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (Sqrt[2]*Sqrt[a/x^4]*x^2*(1
+ x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqr
t[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0730181, antiderivative size = 281, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {15, 325, 303, 218, 1877} \[ \frac{\sqrt{x^3+1} x^2 \sqrt{\frac{a}{x^4}}}{x+\sqrt{3}+1}-\sqrt{x^3+1} x \sqrt{\frac{a}{x^4}}+\frac{\sqrt{2} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} x^2 \sqrt{\frac{a}{x^4}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} x^2 \sqrt{\frac{a}{x^4}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a/x^4]/Sqrt[1 + x^3],x]

[Out]

-(Sqrt[a/x^4]*x*Sqrt[1 + x^3]) + (Sqrt[a/x^4]*x^2*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]
]*Sqrt[a/x^4]*x^2*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt
[3] + x)], -7 - 4*Sqrt[3]])/(2*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (Sqrt[2]*Sqrt[a/x^4]*x^2*(1
+ x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqr
t[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\frac{a}{x^4}}}{\sqrt{1+x^3}} \, dx &=\left (\sqrt{\frac{a}{x^4}} x^2\right ) \int \frac{1}{x^2 \sqrt{1+x^3}} \, dx\\ &=-\sqrt{\frac{a}{x^4}} x \sqrt{1+x^3}+\frac{1}{2} \left (\sqrt{\frac{a}{x^4}} x^2\right ) \int \frac{x}{\sqrt{1+x^3}} \, dx\\ &=-\sqrt{\frac{a}{x^4}} x \sqrt{1+x^3}+\frac{1}{2} \left (\sqrt{\frac{a}{x^4}} x^2\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx+\left (\sqrt{\frac{1}{2} \left (2-\sqrt{3}\right )} \sqrt{\frac{a}{x^4}} x^2\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx\\ &=-\sqrt{\frac{a}{x^4}} x \sqrt{1+x^3}+\frac{\sqrt{\frac{a}{x^4}} x^2 \sqrt{1+x^3}}{1+\sqrt{3}+x}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt{\frac{a}{x^4}} x^2 (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{2 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{\sqrt{2} \sqrt{\frac{a}{x^4}} x^2 (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0049953, size = 27, normalized size = 0.1 \[ x \left (-\sqrt{\frac{a}{x^4}}\right ) \, _2F_1\left (-\frac{1}{3},\frac{1}{2};\frac{2}{3};-x^3\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a/x^4]/Sqrt[1 + x^3],x]

[Out]

-(Sqrt[a/x^4]*x*Hypergeometric2F1[-1/3, 1/2, 2/3, -x^3])

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 353, normalized size = 1.3 \begin{align*}{\frac{x}{2}\sqrt{{\frac{a}{{x}^{4}}}} \left ( i\sqrt{3}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{3+i\sqrt{3}}}} \right ) \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}x-6\,\sqrt{{\frac{i\sqrt{3}-2\,x+1}{3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{i\sqrt{3}-3}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{3+i\sqrt{3}}}} \right ) \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}x+3\,\sqrt{{\frac{i\sqrt{3}-2\,x+1}{3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{3+i\sqrt{3}}}} \right ) \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}x-2\,{x}^{3}-2 \right ){\frac{1}{\sqrt{{x}^{3}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^4)^(1/2)/(x^3+1)^(1/2),x)

[Out]

1/2*(a/x^4)^(1/2)*x*(I*3^(1/2)*((I*3^(1/2)-2*x+1)/(3+I*3^(1/2)))^(1/2)*((I*3^(1/2)+2*x-1)/(I*3^(1/2)-3))^(1/2)
*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(3+I*3^(1/2)))^(1/2))*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)
*x-6*((I*3^(1/2)-2*x+1)/(3+I*3^(1/2)))^(1/2)*((I*3^(1/2)+2*x-1)/(I*3^(1/2)-3))^(1/2)*EllipticE((-2*(1+x)/(I*3^
(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(3+I*3^(1/2)))^(1/2))*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*x+3*((I*3^(1/2)-2*x+1)/(3
+I*3^(1/2)))^(1/2)*((I*3^(1/2)+2*x-1)/(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/
2)-3)/(3+I*3^(1/2)))^(1/2))*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*x-2*x^3-2)/(x^3+1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x^{4}}}}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a/x^4)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\frac{a}{x^{4}}}}{\sqrt{x^{3} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a/x^4)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x^{4}}}}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x**4)**(1/2)/(x**3+1)**(1/2),x)

[Out]

Integral(sqrt(a/x**4)/sqrt((x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x^{4}}}}{\sqrt{x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a/x^4)/sqrt(x^3 + 1), x)